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Ahtract. We predict new oscillations in the frequency dependence o l  the intensity 
autocorrelation functions of waves lor a tube geometry. We have performed numerical 
simulations which clearly confirm the existence of new long-range correlations. 

Recently, much work has been devoted [ 1-71 to the study of intensity correlations of 
waves in random systems. Quite remarkably, these correlations are of a long-range 
nature and enhance [ 11 the fluctuations of the transmission coefficient in a non-classical 
manner [1,3]. That is, ( T z >  - ( T ) *  is not proportional to W' (where I2 is the 
volume) but depends explicitly on the length L (in a slab geometry) and the width W 
of the system. 

In this letter, we study the frequency dependence of the intensity autocorrelation 
function C ( A o )  for a tube geometry, where L >> W. Recently, this geometry has become 
interesting experimentally [6,71. We find new behaviour for C ( A o )  for AW > D/W* 
(where D is the diffusion constant). In this region, C ( A o )  oscillates as AW increases with 
an amplitude which decays slowly as Aw-'. We have also performed numerical 
simulations by applying the Edrei-Kaveh [SI method to this new geometry and have 
found new long-range behaviour. 

The long-range nature of the intensity fluctuations was first demonstrated for their 
angular dependence. This was achieved by two independent methods: by diagrammatic 
techniques [1,2] and by the Langevin approach [4]. Both methods seem to coincide 
(up to numerical factors [4]). The angular correlation function is defined as 

C(Aq.3 Aqb) E (m., q b ) S 1 ( % ' ,  q h . 1 )  ( 1 )  

where Sl(q,, qb)  = I ( & ,  qb)  - ( I ( &  q b ) )  and similarly for SI(&, ijv). The vectors &, qb 
correspond to the incident and emitted wavevector, respectively. For two given such 
pairs of wavevectors (qn,qb)  and (q,+,qb.), it was shown that C is a function of 
Aq, = qa - 4.. and Aqb = qb - qb.. Equation ( I )  can be expanded [2] in powers of the 
inverse dimensionless conductance y - '  = (A/ W)d- '  ( L / l ) ,  where I is the elastic transport 
mean free path and d is the dimensionality of the system. Thus, ( I )  can be written as 

C(A%, Aqb) = 1 g'-'Cn(A%, &). (2) 

Until now, only the first three terms have been calculated. For wide samples for which 
W >> L, g - l  is extremely small which causes C, and C, to be almost unobservable. The 
short-range contribution C, is called the 'memory effect' [2,9,lO]. C, was readily 
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determined numerically [SI and observed experimentally [IO]. The main point to note 
is that C ,  is identical for a two-dimensional system and a three-dimensional system. It 
is therefore easier to detect C, for a two-dimensional system because g-’  is then larger 
by a factor W / l .  Indeed, C,(A&, Aqb) has recently been obtained from numerical 
simulations [ I  I ]  and found to be in agreement with the analytical predictions. C ,  has 
not yet been determined for a wide slab for which W >> L. 

By analogy with ( I ) ,  one may define the frequency-dependent autocorrelation 
function 

(3)  C(Aw) = ( S l ( m ) S l ( w  + Am)) 

where SI(@) = I ( w )  - ( l ( w ) ) .  This can also be expanded in powers of g-’, 

For wide samples for which W >> L, only F,(Am) has been determined numerically 
[ I 1  1 or experimentally [ 121. The long-range correlations, F2(Am) and F3(Am) contribute 
negligibly to C(Aw). Analytical expressions for F,(Ao) were obtained [ 131 for different 
geometries by showing [ 131 that 

( 5 )  

where P(t) is the diffusive probability for a multiple-scattering trajectory of length Vt 
(where V is the velocity of light in the medium). Equation ( 5 )  has been obtained by 
Edrei and Kaveh [ 131 and confirmed by numcrical simulations [SI .  Genack and Drake 
determined Cl21 P(t) experimentally from the transmitted pulse shape of a slab and 
showed that the resultant F , ( A o )  (from (5)) is in excellent agreement with the measured 
C(Am). This confirms that the contributions of the higher-order terms in (4), F2(Am) 
and F, (Ao) ,  are negligible when W >> L. 

Recently, van Albada and Lagendijk [7] showed that when a point source is used 
instead of a plane wave, the contribution of F2(Am) to the total transmission coefficient 
is enhanced. They were able to determine F2(Am) and showed that it agrees with the 
calculation of Pnini and Shapiro [4]. 

Genack and co-workers 161 has recently pointed out that by using a tube geometry, 
one enhances the contributions of F, and F, because g-’ becomes rather larger when 
w << L. 

The purpose of this letter is to show that the functional form for a tube geometry 
is entirely different from the wide geometry, for which W >> L. We show that F2(Am) 
depends markedly on W/L. For W/Lc< 1, we find that F2(Aw) is almost independent 
of Am and contributes a constant correlation, similar to F,. Thus, in this regime F ,  is 
indistinguishable from the constant F ,  except that its contribution to C(Am) is larger 
by a factor g. 

F,(Am) = 1s P(t) exp(iAmt)dtI2 

When W << L, we find for F2(Am),  

where x = ( A w / D ) ” ~  W/2. We see that, unlike the case of a wide system W >> L, F , ( A o )  
is independent of the length of the system L. This is in sharp contrast to F , ( A o )  in this 
geometry. We can show that, to a n  excellent approximation, F,(Aw) is independent of 
W and continues to scale as ( A w / D ) ” ~ L .  T o  prove this result, we turn to (5) and show 
that P(t) is almost independent on W. For a given W, we have to impose an additional 
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two reflecting boundary conditions (we use a two-dimensional tube). In this case, we 
get P , ( t )  = P(t)A(t, y), where P(t) corresponds to W + 00 and A(t,y) is the correction 
due to a finite W. In this case, P J t )  depends on the distance y from the side boundary. 
Solving the diffusion equation with the above boundary conditions yields 

m 

A(t,y) = n-’ sin(2nnyo/W)cos(2nny/W) exp(-n2Dn2t/W2) (7)  

where yo is a negligibly small number (yo << W )  which is introduced to avoid conflicting 
boundary conditions at the corners y = 0 and y = W. As long as W > I ,  we must have 
yo << W and only the n = 0 term in (7)  contributes, leading to A ( t , y )  = 1. This result 
is in striking contrast to Cl(Aq,,,A&) for a tube geometry which was recently shown 
by Eliyahu et al [ 141 to differ significantly from a wide system where W >> L. From 
this result we may conclude that even for a tube geometry (where g- ’  is not small), 
F2(Aw) may be observed only for Am > D/L’, where F , ( A o )  is small. For AD 
near the half-width AmHw = D/L2, we get for x in ( 6 ) ,  x = W/2L. Since for a tube 
geometry W / L  << 1, we find F,(Ao 5 D/L2) 2 1. Thus, F2(Am) is almost constant and 
indistinguishable from F,. When Am increases much above AwHw. F,(Aw) decays 
exponentially and F2(Aw) is revealed. When Am > D/W2, F2(Aw) oscillates according 
to equation (6). Thus, the range offrequencies where these oscillations should be observed 
is Am 2 Ao,,(L/W)~. We may distinguish two cases. For tubes where L >> W, the 
oscillatory region is difficult to reach and F2(Aw) = 1. For tubes where L 2 W, we 
predict that near the tail of C(Ao)(for Aw > AwHw), oscillatory behaviour should set in. 

We have performed numerical simulations to verify these predictions, using the 
Edrei-Kaveh method [SI for calculation C(Aw). We first show the results for a 
two-dimensional tube with L = 7 W. In this case, oscillatory behaviour should be observed 
only for Aw > 49AwHW. In figure 1, we show our numerical results and compare them 
with the theory. All the results are normalized to C ( A o  = 0). The squares represent 
F , ( A o ) .  It should be emphasized that F, (Aw)  is calculated numerically directly 
from the electric field/electric field correlation, F,(Aw) = I(E*(w)E(w + Aw) > 1,. We 
compare our simulations with F,(Aw) as calculated from ( 5 ) .  The excellent agreement 
is evident from the figure. In figure 1, we also show the entire correlation function C(Aw) 
which is represented by the plus signs. The fact that C(Aw) is always larger than Fl (Aw)  
is due to the long-range contributions F,(A&) and F,(Aw). For this geometry, we plot 
C,(Aw) = g-’F,(Ao) as given by ( 5 ) .  For the range of frequencies in the figure, 
F,(Aw) = 1 and C,(Aw) = g - l  = 0.28. We also plot C,(Ao)  = g - , F , ( A w ) .  Since 
F,(Aw) = 1, C , (Ao)  = g-, = 0.078. The broken curve in figure 1 represents the total 
contribution C(Aw) = C,(Aw) + C,(Ao)  + C,(Aw). We see that there is excellent 
agreement between the analytical results for C( Aw) and those obtained by the simulations 
(the plus signs). Figure 1 confirms our prediction that for L>> W, F2(Aw) = 1 and is 
similar to F3(Aw) = 1. Of course, the contribution of F2(Aw) to C(Aw) is larger than 
F3(Aw) by a factor g = 3.6. 

We now turn to shorter tubes in order to study the existence of the oscillations of 
F2(Aw). We have used a two-dimensional tube with L = 2W. Here we expect to see 
oscillations for Aw 2 ~Ao, , .  In figure 2, we plot C(Aw) as a function of Aw. 
The broken curve is F , ( A o )  which agrees with the simulations for Am < AmHw. 
For Aw > AwHw, F,(Aw) decays exponentially and C(Ao)  = C,(Ao)  + C,.  The full 
curve corresponds to C,(Aw) where C,(Aw) = g - ’ F , ( A o )  = 0.09(sin x/x), with 
x = ( A w / D ) ” ~ ( W / ~ )  and C ,  = g - 2  = 0.0081. We see that in this regime, C,(Aw) makes 
the dominant contribution to C(Aw). The analytical result F,(Aw) was calculated 

“=O 
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Figure 1. C(Ao) as a function of Aw/o for L = 7W The squares represent the numerical 
results lor F , ( A o )  and the full curve the analytical results as extracted from ( 5 ) .  The plus 
signs represent thd numerical results for C(Ao) and the broken curve the analytic results 
(see text). Curve (a) represents C,(Aw) a given by (6) and curve (b) represents C, = 9 - l .  
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Figure 2. C(Ao) as a function of A o / o  fur L = 2W. The full curve is the calculated C(Ao) 
and the broken curve is F , ( A o )  as extracted from ( 5 ) .  
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as follows. By using the Hikami box diagrams [15],  Eliyahu et al [14] have 
recently calculated C,(A&, Aqb) for a tube geometry. Setting Aqn = 0, we get 
C,(Aq, = 0, Aqb) = [~in(Aq,W/2)/(Aq,W/2)]~. When afrequency shift A u  is introduced 
in the propagators, it serves as a cut-off and Aqb must be replaced by (Aw/D)'". This 
leads to (6). The numerical simulations were not accurate enough to follow this oscillatory 
behaviour. 

In summary, we have shown that the long-range contribution F2(Ao) for a tube 
geometry is entirely different from that of a wide system where W >> L. For tubes where 
L >> W, F 2 ( A u )  is a constant, independent of Am for a wide range, Am < D/W2. For 
A u  > D / W 2 ,  F2(Ao) has an oscillatory character and dominates C(Au). 

We acknowledge important discussions with Richard Berkovits. This work was 
supported by the United States-Israel Binational Science Foundation (BSF). 
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