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Winding Numbers, Complex Currents, and Non-Hermitian Localization
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The nature of extended states in disordered tight binding models with a constant imaginary ve
potential is explored. Such models, relevant to vortex physics in superconductors and to popula
biology, exhibit a delocalization transition and a band of extended states even for a one-dimensio
ring. Using an analysis of eigenvalue trajectories in the complex plane, we demonstrate that e
delocalized state is characterized by an (integer) winding number, and evaluate the associated com
current. Winding numbers in higher dimensions are also discussed. [S0031-9007(98)06281-4]

PACS numbers: 72.15.Rn, 05.70.Ln, 73.20.Jc, 74.60.Ge
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There is a growing interest in the spectra of rando
non-Hermitian matrices [1]. Considerable attention h
focused on a particularly simple class of tight binding An
derson models with a constant imaginary vector potenti
inspired by the physics of vortex matter [2]. These mode
exhibit a sharp delocalization transition even in one a
two dimensions. Similar operators, represented by lar
real, asymmetric sparse matrices, arise in theories of po
lation biology in random media with convection [3], and i
many other contexts [4]. Delocalized eigenmodes arise
response to a sufficiently large asymmetry parameter,
companied by eigenvalues which escape in conjugate p
from the real axis into the complex plane [2].

Although the initial work relied heavily on numerical in-
vestigations [2], there has been considerable recent anal
progress, particularly in one dimension. Brouweret al.
calculate explicitly finite size effects and the bubble o
complex eigenvalues representing extended states in
center of the band in the limit of weak disorder [5]. Brezi
and Zee [6] have obtained exact results for the density
states for the special case of Lorentzian site randomn
embodied in the Lloyd model [7]. Goldsheid and Kho
ruzhenko discuss this model and show more generally t
the eigenvalues are distributed along curves in the comp
plane, providing analytic formulas relating the spectrum
the properties of a reference Hamiltonian with no asym
metry [8]. The nontrivial behavior which results forlarge
asymmetry parameters in two and three dimensions h
been studied analytically via renormalization group calc
lations and a mapping onto Burgers equation [3].

In this paper we study the eigenfunctions and compl
currents associated with the band of extended states in
dimension. Unlike delocalized states in Hermitian diso
dered systems (where the eigenfunctions can always
chosen to be real), we show that these complex eigenfu
tions are characterized by a conserved winding numben
even when the disorder is strong. Such topological qua
tum numbers can be used to label the eigenvalue spect
ensgd, whereg is the asymmetry parameter, i.e., the imag
nary vector potential. A study of the eigenvalue traje
tories as a function ofg then leads to complex currents
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Jn ­ 2i ≠en

≠g , which determine the average tiltdrydz of
the vortex trajectoryrszd in a superconductor with colum-
nar pins in the presence of a perpendicular magnetic fie
proportional tog. Following [2], an eigenstate is defined
as delocalized if its associate complex current is nonze
in the thermodynamic limit. Assuming for simplicity a pe-
riodic box of sizeLz in the column direction, one has, for
example, ø

drszd
dz

¿
­ 2i

P
n Jne2enLzyTP

n e2enLzyT , (1)

where the brackets denote a thermal average at tempera
T . The real part of the current cancels in the sum, only th
imaginary part of the current [2] contributes to the averag
tilt. We shall also argue that winding numbers can be us
to label extended states forlarge asymmetry parameters in
two or more dimensions.

The one-dimensional non-Hermitian tight binding
model “Hamiltonian” in a basis ofN sites localized at
positionshrjj reads

Hi,j ­ 2
1
2 wjsehj di11,j 1 e2hj di21,jd 2 Vjdij , (2)

where we assume periodic boundary conditions and t
hhjj are real asymmetry parameters. When exponentiat
this operator describes the transfer matrix for a flux lin
with columnar defects in a cylindrical shell [2]. The Liou-
ville operator describing population growth on a lattice i
an inhomogeneous environment with convection is give
by L ­ 2H [3]. The zero mean random potentialVj

is chosen independently for each site, and arises from t
variations of columnar pin diameters (vortex matter) o
inhomogeneous growth rates (population biology). As di
cussed in [2], the randomness in the off-diagonal ho
ping is due to the irregular spacing between column
defects in superconductors. Ifaj is the spacing between
nearest neighbor columnsj and j 1 1, then thewj ­
w0 exps2gajd andhj ­ gajya, whereg andw0 . 0 are
constants,a is the average lattice constant, andg is pro-
portional to the field component which tries to tip vor
tices away from the columns. In models of populatio
© 1998 The American Physical Society
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growth,wj describes diffusion between inhomogeneous
distributed population centers andhj represents a fluctuat-
ing convection velocity with average valueg and second
moments. We impose periodic boundary conditions in
the spacelike direction; i.e., thesN 1 1dst site is identified
with the first site of the sample.

Upon carrying out a similarity transformation on the
Liouville operator,L 0 ­ SL S21, where

Si,j ­ di,j exp

"
j21X
k­1

hk 2
s j 2 1d

N

NX
k­1

hk

#
, (3)

one finds that the spectrum will be the same as that o
Liouvillian with a uniformasymmetry parameter, namely
L 0 ­ 2H 0 with

L 0sgd ­

0BBBBBBB@
V1

w1

2 eg 0 · · · wN

2 e2g

w1

2 e2g V2
w2

2 eg · · · 0
0 w2

2 e2g V3 · · · 0
...

...
...

...
...

wN

2 eg 0 0 · · · VN

1CCCCCCCA , (4)

whereg ­
1
N

PN
j­1 hj. Equations (3) and (4) generalizes

the gauge transformation used to describelocalizedstates
in, e.g., Refs. [2] and [3]. The sample to sample fluctu
tions of g about its mean fall off likesy

p
N [9]. As N

grows one may thus replace the fluctuating quantityhi by a
disorder independent average valueg, as we shall do in the
rest of this paper. This result impliesuniversality in the
response to random convection in 1D growth models—
nonuniform convection velocities may be mapped int
a uniform average velocity via the transformation (3
provided one applies this similarity transformation to th
eigenfunctions as well.

For a 1D ring with random parametershVij, hwij, and
g ­ 0, all the eigenfunctions of (4) are real and localized
and its eigenvalues are real and discrete [10]. We assu
a large but finite chain, such that, although the spectru
is discrete, the length of the chain is much larger than t
maximal localization length of an eigenmode.

In a typical symmetric one-dimensional disordered sy
tem withg ­ 0, the localization lengthj is largest at the
center of the band and smaller at the tails. The criterion f
delocalization of the asymmetric system iska , g, where
k ; 1yj [11]. As a result, pairs of complex energies rep
resenting delocalized states first appear as a “bubble” at
center of the band, which then spreads into the band ta
To study the complex currents associated with delocaliz
states we follow Refs. [5,6,8] and exploit the relation be
tween the complex spectrum of the asymmetric proble
with g fi 0 and the real eigenvalues of a “background” lo
calized problem withg ­ 0, and the same realization of
disorder.

The condition for a complex numbere ­ eR 1 ieI

to be an eigenvalue of the matrixL 0sgd is Detfe 2

L 0sgdg ­ 0. Equation (4) implies thate is an eigenvalue
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Detfe 2 L 0sg ­ 0dg ­
NY

i­1

se 2 e0
i d

­ 2fcoshsgNd 2 1g
NY

j­1

µ
2wj

2

∂
,

(5)

where thehe0
i j are the (real) eigenvalues of the back-

ground matrixL 0sg ­ 0d. To extract winding numbers,
we first observe that the right-hand side of (5) is real an
positive for evenN , while for oddN it is real and nega-
tive. As a result, the phases in the left product of (5) for
each complexe should add up to (see inset of Fig. 1)X

i

cot21

µ
eR 2 e

0
i

eI

∂
­ pp , (6)

with p ­ 2n for evenN , p ­ 2n 1 1 for odd N, where
n is an integer, and the function cot21sxd varies fromp

to 0 asx goes between2` and`.
As eI ! 0, each term in Eq. (6) givesp for every

eigenvaluee
0
i to the right of eR, and zero for each

eigenvalue to the left. To satisfy (6) for even (odd)N
and a givenn, the eigenvalue must leave the real axis and
enter the complex plane at the gap between the2nth and
the s2n 1 1dth [s2n 1 1dth and the2nth] eigenvalues of
theg ­ 0 background system. We calln the indexof the
trajectoryeRsgd 1 ieI sgd in the complex plane.

For odd N , we see immediately from (6) that the
rightmost eigenvalue (withp ­ n ­ 0) must remain real,
consistent with Perron-Frobenius theorem [13]. The corre
sponding nodeless eigenfunction corresponds to the grou
state ofH 0 ­ 2L 0. For N even, particle-hole symme-
try implies that both the rightmost and leftmost eigenvalue
are always real. More generally, for a fixed value ofn, the
set of all feRsgd, eIsgdg satisfying Eq. (6) defines a curve
in the complex plane, as illustrated in Fig. 1. Henceforth
we assumeN even for simplicity.

FIG. 1. Eigenvalue trajectories in the complex plane. Inset
Angles entering Eq. (6) for a givenesgd.
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A more complete description of the eigenvalue traje
tory results from taking the logarithm of the modulus o
Eq. (5). In the limit Ng ¿ 1 one finds a second con-
straint onesgd, namely, [5,6,8]

jgj ­ 2 ln

µ
w
2

∂
1

1
N

X
i

lnsje 2 e0
i jd , (7)

where je 2 e
0
i j ­

p
seR 2 e0

i d2 1 e2
I and w ­

2f
QN

j­1
wj

2 g1yN .
This constraint is described graphically in Fig. 1, whic

shows schematically the level curves defined by (7) ne
the band center for three values ofg. These are lines of
constant potential for an equivalent2d electrostatic prob-
lem with charges at the positions of the localized poi
spectrum forg ­ 0. When g is small, the constraint is
solved by eigenvalue pairs on the real axis in the gaps
tween neighboringe0

j ’s indexed byp ­ 2n. The depar-
ture of the eigenvalues from theirg ­ 0 values is initially
exponentially small in the system size [2]. Asg increases,
however, successive pairs of eigenvalues eventually me
at a saddle point in the potential contours and detach fro
the real axis at right angle. For a given real energyeR ,
Thouless has defined an energy dependent inverse lo
ization lengthkseRd for the associated Hermitian prob
lem [12],

kseRd ­ 2 ln

µ
w
2

∂
1

1
N

X
i

lnsjeR 2 e0
i jd . (8)

Upon comparing with Eq. (7), we see thateI becomes
nonzero wheneverjgj . kse0

Rd wherese0
R , 0d is the detach-

ment point of the eigenvalue pair.
As g increases abovekse0

Rd, Eqs. (6) and (7) define a
unique pair of complex eigenvalue trajectoriesensgd and
ep

nsgd for every value ofn. Upon passing to the limit
N ! `, the spectrumhe0

j j for g ­ 0 closes up, and is
described by a density of statesr0sld. Equations (6) and
(7) may then recombine into a single complex equatio
namely,Z `

2`
dl r0sld lnfensgd 2 lg ­ ln

µ
w
2

ejgj

∂
1 ip

µ
2n
N

∂
,

(9)

where lnfesgd 2 lg ­ lnfjeR 1 ieI 2 ljg 1 i cot21fseR 2

ldyeI g. In the limit N ¿ 1 and for a density of states
function symmetric around the special detachment po
with e

0
R ­ 0, there is a purely imaginary trajectory of the

form esgd ­ ieI sgd with n ­ Ny2. For fixedg, Eq. (9)
thus leads to an implicit formula for the “height”emax

I
of the bubble of complex eigenvalues in the center
the band, namely,12

R
dl rsld lnfl2 1 semax

I d2g ­ jgj 1

lns w
2 d. This integral vanishes, as expected [6], in the “on

way” limit, g ! ` with w
2 ejgj ­ 1. For other detachment

points, the eigenvalue trajectories curve to the left or rig
as required by the constraint (6) (see Fig. 1).
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The analysis above suggests that the imaginary parts
mosthensgdj diverge asjgj ! `. It is then expected that
all eigenfunctionsfns jd are approximately plane waves,
fns jd , expsiknrjyad, with free particle eigenvalue en-
ergiesensgd ­ w cosskn 1 igd [2,3]. For largejeI sgdj,
Eq. (9) leads to

ensgd ø
w
2

expsjgj 1 2ipnyNd . (10)

Comparison with the free particle spectrum at largejgj
shows immediately that the indexn of the eigenvalue
trajectory and the wave vector are related,kn ­ 2pnyN.
These wave eigenfunctions spiral around the origin i
the complex plane as one moves along the1d lattice of
the tight binding model sites, leading to a well defined
winding numbern. The winding number associated with
the eigenvalueep

nsgd in the lower half plane is then2n.
As g decreases, the associated delocalized wave fun

tion fns j; gd must remain nonzero at every site: If
fns j; gd were, in fact, exactly zero at some sitei, it can
be shown that the state is localized with a real eigenvalu
and eigenfunction by mapping all effects of the asymmetr
onto the special sitei via a transformation like (3). Thus,
the winding number must bepreservedas g decreases;
i.e., the winding number is a topological invariant along
an eigenvalue trajectory. The projection of such a delo
calized eigenfunction is illustrated in the inset of Fig. 2.

As N ! `, we can replace the winding indexn by the
continuous variablekn ­

2p

N n. Equation (9) then shows
quite generally that the complex spectrum is a functio
of only the combinationg 1 ik, i.e.,ensgd ­ esg 1 ikd.
It then follows from the Cauchy-Riemann relations tha
all eigenvalue trajectories are at right angles to the line
of constantg, desgd

dg ­ 2i
desgd

dk . An explicit formula for
the complex current results, moreover, from differentiatin

FIG. 2. Spectrum and winding numbers forN ­ 1000 with
Vj uniformly distributed in the intervalf21, 1g and g ­ 0.4.
Inset: Projection onto the complex plane of eigenfunction wit
N ­ 200, g ­ 1, andn ­ 100.
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Eq. (9) with respect tog,

Jfensgdg ­ 2i
≠ensgd

≠g

­

"
i
Z

dl
r0sld

ensgd 2 l

#21

; 2iG21
0 fensgdg .

(11)

Evidently, the current associated with a particula
complex eigenvalueensgd is determined by the Green’s
function of theg ­ 0 problem. As an application of our
results, we note that the disorder averaged Green’s fun
tion for the Lloyd model, with Lorentzian site disorder,
PrsVjd ­ 1

p

g

sVjd21g2 is kG0sEdl ­ fsE 1 igd 2 tg21y2

[6,7], and complex energy spectrum for extended stat
with Im en . 0, ensgd ­ w cosskn 1 igd 2 ig. It then
follows immediately from Eq. (11) that the disordered
averaged inverse complex currentJn ­ kJ21

n l21 is

Jn ­ 2iw sinskn 1 igd (12)

in agreement with a direct calculation of the current from
the spectrum itself. If we focus attention on ImJ as a
function of Ree, we obtain ImJ ­ 2w tanhsgd Ree, in
excellent qualitative agreement with the results obtaine
for the imaginary current with bounded disorder in Ref. [2
for different values ofg. Although we have checked
our results with the Lloyd model, we stress that Eq. (11
expressing the complex current in terms of the Green
function of the Hermitian reference system is much mor
general.

Figure 2 shows a typical eigenvalue spectrum forL 0

in one dimension superimposed on the winding numbe
associated with the extended eigenfunctions. The windin
numbers are exactly6Ny2 at the band center, and their
magnitudes decrease monotonically as one moves towa
the upper edge of the band, i.e., toward the lowest energ
of the corresponding Hamiltonian. The winding number
remain finite up to the mobility edge separating comple
and real eigenvalues, but become undefined in the ba
tails, where all wave functions are real. At the transition
the imaginary part of the eigenvector vanishes, while it
real part remains finite. In this case, the winding inde
classification can be replaced by counting the nodes of t
real, localized wave function [12].

Given that a well defined topological quantum numbe
(which plays the role like that of the momentum) exists fo
the extended states in the one-dimensional non-Hermiti
localization problem, it is interesting to speculate whethe
similar topological invariants exist for delocalized states i
higher dimensions. It can be shown that the 2D delocalize
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wave functions acquire vortices near the transition, but th
significance of these topological objects is yet unclear.
this context, it is interesting to note that a recent analysis
delocalized wave functions for the non-Hermitian problem
in D ­ 2 predicts algebraic decay of the wave function
amplitude [14], similar to the quasi-long-range order below
the vortex unbinding transition in statistical mechanics
Vortex pairs may also be involved in changes of the vecto
winding number of delocalized wave functions ford ­ 2,
similar to the decay of supercurrents in helium films a
finite temperature [15].
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