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Winding Numbers, Complex Currents, and Non-Hermitian Localization
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The nature of extended states in disordered tight binding models with a constant imaginary vector
potential is explored. Such models, relevant to vortex physics in superconductors and to population
biology, exhibit a delocalization transition and a band of extended states even for a one-dimensional
ring. Using an analysis of eigenvalue trajectories in the complex plane, we demonstrate that each
delocalized state is characterized by an (integer) winding number, and evaluate the associated complex
current. Winding numbers in higher dimensions are also discussed. [S0031-9007(98)06281-4]
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There is a growing interest in the spectra of randomv, = —iZ;, which determine the average tir /dz of
non-Hermitian matrices [1]. Considerable attention hashe vortex trajectory(z) in a superconductor with colum-
focused on a particularly simple class of tight binding An-nar pins in the presence of a perpendicular magnetic field
derson models with a constant imaginary vector potentialproportional tog. Following [2], an eigenstate is defined
inspired by the physics of vortex matter [2]. These modelsas delocalized if its associate complex current is nonzero
exhibit a sharp delocalization transition even in one andn the thermodynamic limit. Assuming for simplicity a pe-
two dimensions. Similar operators, represented by largeodic box of sizeL, in the column direction, one has, for
real, asymmetric sparse matrices, arise in theories of popexample,
lation biology in random media with convection [3], and in CeL)T
many other contexts [4]. Delocalized eigenmodes arise in <dr(z)> — — Zn]ne— 1)
response to a sufficiently large asymmetry parameter, ac- dz e eldT 7

companied by eigenvalues which escape in conjugate pairs
from the real axis into the complex plane [2]. where the brackets denote a thermal average at temperature

Although the initial work relied heavily on numerical in- T. The real part of the current cancels in the sum, only the

C : imaginary part of the current [2] contributes to the average
vestigations [21’ there has been_consm_ierable recent analyft|| t g</Ve s};gll also argue that \Evi]ndin numbers can be us%d
progress, particularly in one dimension. Brouvetral. : 9 9

calculate explicitly finite size effects and the bubble of © label extended states fiarge asymmetry parameters in

complex eigenvalues representing extended states in @O or more d!mens!ons. . . __—
center of the band in the limit of weak disorder [5]. Brezin The “one—fjlmgns!’onal ”O”THerm'“?‘” t'ght. binding
and Zee [6] have obtained exact results for the density o?‘o‘?'?' Hamiltonian” in a basis oiV sites localized at
states for the special case of Lorentzian site randomne?@s'tlons{r j} reads
embodied in the Lloyd model [7]. Goldsheid and Kho- H; = _%W_i(eh/6[+1,j +e sy — Vidi, (2)
ruzhenko discuss this model and show more generally that
the eigenvalues are distributed along curves in the complexhere we assume periodic boundary conditions and the
plane, providing analytic formulas relating the spectrum to{4;} are real asymmetry parameters. When exponentiated,
the properties of a reference Hamiltonian with no asym+his operator describes the transfer matrix for a flux line
metry [8]. The nontrivial behavior which results flarge  with columnar defects in a cylindrical shell [2]. The Liou-
asymmetry parameters in two and three dimensions haslle operator describing population growth on a lattice in
been studied analytically via renormalization group calcuan inhomogeneous environment with convection is given
lations and a mapping onto Burgers equation [3]. by L = =2 [3]. The zero mean random potentidj

In this paper we study the eigenfunctions and complexs chosen independently for each site, and arises from the
currents associated with the band of extended states in onariations of columnar pin diameters (vortex matter) or
dimension. Unlike delocalized states in Hermitian disor-inhomogeneous growth rates (population biology). As dis-
dered systems (where the eigenfunctions can always bmissed in [2], the randomness in the off-diagonal hop-
chosen to be real), we show that these complex eigenfunging is due to the irregular spacing between columnar
tions are characterized by a conserved winding number defects in superconductors. df is the spacing between
even when the disorder is strong. Such topological quamearest neighbor columns and j + 1, then thew; =
tum numbers can be used to label the eigenvalue spectrum, exp(—ya;) andh; = ga;/a, wherey andw, > 0 are
€,(g), whereg is the asymmetry parameter, i.e., the imagi-constantsg is the average lattice constant, agds pro-
nary vector potential. A study of the eigenvalue trajec-portional to the field component which tries to tip vor-
tories as a function of then leads to complex currents tices away from the columns. In models of population
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growth, w; describes diffusion between inhomogeneouslyonly if [5,12]

distributed population centers angrepresents a fluctuat- N

ing convection velocity with average valgeand second Defe — L/(g = 0)] = l_[(e —€)
momento. We impose periodic boundary conditions in i=1

the spacelike direction; i.e., thH& + 1)st site is identified N o

with the first site of the sample. = 2[coshgN) — 1] ]_[<_1>
Upon carrying out a similarity transformation on the j=iv 2

Liouville operator,L’ = SL£ S~!, where (5)

J1 (j—1) & where the{e’} are the (real) eigenvalues of the back-
Sij = 6ij ex;{z hie = = > hkj|» (3)  ground matrixL (g = 0). To extract winding numbers,
k=1 k=1 we first observe that the right-hand side of (5) is real and
one finds that the spectrum will be the same as that of positive for evenw, while for odd N it is real and nega-
Liouvillian with a uniformasymmetry parameter, namely, tive. As a result, the phases in the left product of (5) for

L' = -3 with each complex should add up to (see inset of Fig. 1)
w w, — 0
Vi Yies 0 - e ,1<6R — € > _
w w2 cot '(— | = , 6
Bet Y, et . 0 2 e . ©
Lig=| 0 Fef Vi 0 1@

with p = 2n for evenN, p = 2n + 1 for odd N, where

: : : : n is an integer, and the function cd{x) varies froma#

5 e 0 o - W to 0 asx goes between-o andos.

e . _ As e; — 0, each term in Eg. (6) givesr for every

whereg =  >;_, h;. Equations (3) and (4) generalizes eigenvaluee! to the right of e, and zero for each

the gauge transformation used to desctdmalizedstates eigenvalue to the left. To satisfy (6) for even (odu)

in, e.g., Refs. [2] and [3]. The sample to sample fluctuaand a givem, the eigenvalue must leave the real axis and

tions of g about its mean fall off likeo /</N [9]. AS N enter the complex plane at the gap between2ifi and

grows one may thus replace the fluctuating quantityy a  the (2n + 1)th [(2n + 1)th and the2nth] eigenvalues of

disorder independent average vayas we shall do inthe theg = 0 background system. We cadltheindexof the

rest of this paper. This result impliemiversalityin the  trajectoryex(g) + ie;(g) in the complex plane.

response to random convection in 1D growth models— For odd N, we see immediately from (6) that the

nonuniform convection velocities may be mapped intorightmost eigenvalue (witp = n = 0) must remain real,

a uniform average velocity via the transformation (3),consistent with Perron-Frobenius theorem [13]. The corre-

provided one applies this similarity transformation to thesponding nodeless eigenfunction corresponds to the ground

eigenfunctions as well. state of H{' = — L. For N even, particle-hole symme-
For a 1D ring with random parametef®;}, {w;}, and  try implies that both the rightmost and leftmost eigenvalues

g = 0, all the eigenfunctions of (4) are real and localized,are always real. More generally, for a fixed value:pthe

and its eigenvalues are real and discrete [10]. We assumt of all[ex(g), €;(g)] satisfying Eq. (6) defines a curve

a large but finite chain, such that, although the spectrunih the complex plane, as illustrated in Fig. 1. Henceforth,
is discrete, the length of the chain is much larger than thgve assumev even for simplicity.

maximal localization length of an eigenmode.
In a typical symmetric one-dimensional disordered sys-
tem with g = 0, the localization lengtlg is largest at the Im €
center of the band and smaller at the tails. The criterion for
delocalization of the asymmetric systemcig < g, where Ime
k = 1/£[11]. As aresult, pairs of complex energies rep-
resenting delocalized states first appear as a “bubble” at the
center of the band, which then spreads into the band tails
To study the complex currents associated with delocalized
states we follow Refs. [5,6,8] and exploit the relation be-
tween the complex spectrum of the asymmetric problem
with ¢ # 0 and the real eigenvalues of a “background” lo-
calized problem withg = 0, and the same realization of
disorder. .
The condition for a complex number = e + ie; € (2)

to be an eigenvalue of the matriX'(g) is Defe — FIG. 1. Eigenvalue trajectories in the complex plane. Inset:
L'(g)] = 0. Equation (4) implies tha¢ is an eigenvalue Angles entering Eq. (6) for a gives(g).

&(g)
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A more complete description of the eigenvalue trajec- The analysis above suggests that the imaginary parts of
tory results from taking the logarithm of the modulus of most{e,(g)} diverge adg| — . It is then expected that

Eqg. (5). In the limitNg > 1 one finds a second con-
straint one(g), namely, [5,6,8]

el = —in(5) + 5 St~
where e — €] =+/(ex — €"? + e and w =

AT F1VY

This constraint is described graphically in Fig. 1, which
shows schematically the level curves defined by (7) nea?

the band center for three values @f These are lines of
constant potential for an equivale?d electrostatic prob-
lem with charges at the positions of the localized poin
spectrum forg = 0. Wheng is small, the constraint is

solved by eigenvalue pairs on the real axis in the gaps b&¥

tween neighboring})’s indexed byp = 2n. The depar-
ture of the eigenvalues from thejr= 0 values is initially
exponentially small in the system size [2]. A$ncreases,
however, successive pairs of eigenvalues eventually mer
at a saddle point in the potential contours and detach fro
the real axis at right angle. For a given real eneegy
Thouless has defined an energy dependent inverse loc
ization lengthx(eg) for the associated Hermitian prob-
lem [12],

w

k(eg) = — In( 5

) + % gln(leR — ). (@®)

Upon comparing with Eqg. (7), we see that becomes
nonzero whenevdg| > «(eg) where(eg, 0) is the detach-
ment point of the eigenvalue pair.

As g increases above(er), Egs. (6) and (7) define a
unique pair of complex eigenvalue trajectoriggg) and
€. (g) for every value ofn. Upon passing to the limit
N — oo, the spectrurr{e})} for g = 0 closes up, and is
described by a density of statgg(A). Equations (6) and

(7) may then recombine into a single complex equation,

namely,
2n

N)’
)

where Ihe(g) — Al=1In[|eg + ie; — A|]+ i cot '[(er —
A)/e€r]. In the limit N > 1 and for a density of states

f_o; dA po(A) In[e,(g) — Al = |n<% e|g|> n m(

function symmetric around the special detachment point

with e; = 0, there is a purely imaginary trajectory of the
form e(g) = ie;(g) with n = N/2. For fixedg, Eq. (9)
thus leads to an implicit formula for the “heighe}]"**

of the bubble of complex eigenvalues in the center of

the band, namelys [dA p(A)In[A> + (e]*)?] = lg| +
In(3). This integral vanishes, as expected [6], in the
way” limit, ¢ — o with ¥e¢! = 1. For other detachment
points, the eigenvalue trajectories curve to the left or righ
as required by the constraint (6) (see Fig. 1).
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all eigenfunctionsp, (j) are approximately plane waves,
¢dn(j) ~ explik,r;/a), with free particle eigenvalue en-
ergiese,(g) = wcodk, + ig) [2,3]. For large|e;(g)],
Eq. (9) leads to
w .
€.(g) = > exp(lg| + 2imn/N). (10)
Comparison with the free particle spectrum at latgg
hows immediately that the index of the eigenvalue
trajectory and the wave vector are relatég,= 27n/N.
These wave eigenfunctions spiral around the origin in
the complex plane as one moves along thelattice of
the tight binding model sites, leading to a well defined
vinding numbem. The winding number associated with
the eigenvalue;(g) in the lower half plane is ther n.
As g decreases, the associated delocalized wave func-
tion ¢,(j;g) must remain nonzero at every site: If
(j; g) were, in fact, exactly zero at some siteit can
e shown that the state is localized with a real eigenvalue
and eigenfunction by mapping all effects of the asymmetry
%rjto the special sitevia a transformation like (3). Thus,
the winding number must bpreservedas g decreases;
i.e., the winding number is a topological invariant along
an eigenvalue trajectory. The projection of such a delo-
calized eigenfunction is illustrated in the inset of Fig. 2.
As N — o, we can replace the winding indexby the
continuous variablé, = %”n. Equation (9) then shows
quite generally that the complex spectrum is a function
of only the combinatiory + ik, i.e.,€,(g) = e(g + ik).
It then follows from the Cauchy-Riemann relations that
all eigenvalue trajectories are at right angles to the lines

of constantg, d;—;‘g) = —id;—;@. An explicit formula for

the complex current results, moreover, from differentiating

0.8
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FIG. 2. Spectrum and winding numbers for = 1000 with

V; uniformly distributed in the interval—1,1] and g = 0.4.
Inset: Projection onto the complex plane of eigenfunction with
N =200, g = 1, andn = 100.
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Eq. (9) with respect tg, wave functions acquire vortices near the transition, but the
den(g) significance of these topological objects is yet unclear. In
Je, (g)] = —i a"—g this context, itis interesting to note that a recent analysis of

delocalized wave functions for the non-Hermitian problem

) po(A) . in D = 2 predicts algebraic decay of the wave function

- ’fd)‘ en(g) — A = —iG, [ea()]. amplitude [14], similar to the quasi-long-range order below

(11) the vortex unbinding transition in statistical mechanics.

) ) ) ] Vortex pairs may also be involved in changes of the vector
Evidently, the current associated with a particularyinding number of delocalized wave functions fbr= 2,

complex eigenvalue,(g) is determined by the Green's simijlar to the decay of supercurrents in helium films at
function of theg = 0 problem. As an application of our finjte temperature [15].

results, we note that the disorder averaged Green’s func- | js a pleasure to acknowledge conversations with B. .
tion for the Lloyd model, with Lorentzian site disorder, Halperin, C. Mudry, B. Simons, J. Avron, and A. Zee.
Pr(V)) = + ity i (Go(E)) =[(E + iy) — 1172 This research was supported by the National Science
[6,7], and complex energy spectrum for extended statesoundation through Grant No. DMR97-14725 and by
with Im €, > 0, €,(g) = wcodk, + ig) — iy. Itthen the Harvard Materials Research Science and Engineer-
follows immediately from Eq. (11) that the disordereding Laboratory through Grant No. DMR94-00396. One
averaged inverse complex curreijt= (J, ")~ is of us (N.M.S.) acknowledges the support of Bar-llan
J, = —iwsink, + ig) (12)  University.
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