
epl draft

Stochastic Desertification

Haim Weismann and Nadav M. Shnerb

1 Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel

PACS 87.10.Mn – Stochastic models in biological physics
PACS 87.23.Cc – Ecology, population dynamics
PACS 05.40.Ca – Noise, fluctuations phenomena

Abstract – The process of desertification is usually modeled as a first order transition, where a
change of an external parameter (e.g. precipitation) leads to a catastrophic bifurcation followed
by an ecological regime shift. However, vegetation elements like shrubs and trees undergo a
stochastic birth-death process with an absorbing state; such a process supports a second order
continuous transition with no hysteresis. Here we study a minimal model of a first order transition
with an absorbing state. When the external parameter varies adiabatically the transition is
indeed continuous, and we present some empirical evidence that support this scenario. The front
velocity renormalizes to zero at the extinction transition, leaving a finite “quantum” region where
domain walls are stable and the desertification takes place via accumulation of local extinctions.
A catastrophic regime shift may occur as a dynamical hysteresis, if the pace of environmental
variations is too fast.

introduction. – The catastrophic bifurcation and its1

statistical mechanics analog, the first order transition,2

play a central role in the physical sciences. In these pro-3

cesses a tiny change in the value of an external parameter4

leads to a sudden jump of the system from one phase to5

another. This change is irreversible and accompanied by6

hysteresis: once the system relaxed to its new phase, it7

will not recover even when the external parameters are8

restored.9

The relevance of these processes to the ecology of pop-10

ulation and communities has been established while ago11

[1]. Recently, there is a growing concern about the possi-12

ble occurrence of regime shifts in ecological systems [2–5].13

The anthropogenic changes of local and global environ-14

mental parameters, from habitat fragmentation to the in-15

creasing levels of CO2 in the atmosphere, raise anxiety16

about the possibility of an abrupt and irreversible catas-17

trophe that may be destructive to the functions and the18

stability of ecosystems [6]. This concern triggered an in-19

tensive search for empirical evidence that may allow to20

identify an impending tipping point, where the most pop-21

ular indicator is the phenomenon of critical slowing down22

[5, 7–10]. Other early warning tools, especially for sessile23

species, have to do with spatial patterns and the level of24

aggregation [4, 11,12]25

Of particular importance is the process of desertifica-26

tion, which is considered as an irreversible shift from an27

”active” vegetation to an ”inactive” bare soil state, re- 28

sulting from an increased pressure (e.g., overgrazing, de- 29

clines in precipitation). As drylands cover about 41% of 30

Earth land surface, desertification affects about 250 mil- 31

lion people around the world [13]. Various models show 32

that, when the vegetation state has a positive feedback, 33

like an increased runoff interception or reduced evapora- 34

tion close to vegetation patches, the system supports two 35

attractive fixed points (alternate steady states) [12, 14]. 36

The bare soil fixed point is stable, since the desert is ro- 37

bust against small perturbation (a small amount of vegeta- 38

tion) for which the positive feedback is too weak, while the 39

active state is self-sustained. Accordingly, a system may 40

cross over from vegetation to bare soil in two routes: First, 41

a disturbance that pushes the system to the basin of at- 42

traction of the bare soil fixed point, and second, when the 43

vegetation fixed point losses stability, i.e., when a change 44

of an external parameter takes the system over its tipping 45

point [15]. These scenarios, tipping point catastrophe and 46

the disturbance, have an analog in the dynamics of equilib- 47

rium first order transitions, as they correspond to spinodal 48

decomposition and nucleation. 49

One feature of the system that received only a little at- 50

tention in the literature is the fact that the bare soil is an 51

absorbing (fluctuation free) state. This property has no 52

analog in equilibrium thermodynamics, where every state 53

allows for fluctuations at finite temperature. A trivial im- 54
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plication of this feature is that a finite system is always55

extinction prone, as it gets stuck in the absorbing state56

for good once it becomes empty, although the time to ex-57

tinction may be long [16]. In an infinite system, on the58

other hand, the active state may acquire stability if the59

colonization rate of empty sites is faster than the rate of60

local extinctions.61

Here we would like to discuss a spatially explicit model62

of desertification with demographic stochasticity, where63

the bare-soil is an absorbing state. It turns out that the64

phase transition becomes continuous, and a new, “quan-65

tum” region appears, in which the front velocity renor-66

malizes to zero on a finite domain of system’s parameters.67

In this region the transition takes place via the accumu-68

lation of local extinctions. The relevance of this theory to69

the practical analysis of ecological regime shifts depends70

on the strength of noise vs. the sweep rate of the exter-71

nal parameter, and we show some empirical evidence that72

suggest a continues transition scenario. Finally, we will73

discuss the type of early warning signals one would like to74

implement in such a transition.75

Desert as an absorbing state - a minimal model. –76

To be specific, let us consider a popular minimal model for77

desertification, which is a simple version of the Ginzburg-78

Landau equation. Denoting the biomass density by b, the79

following PDE allows, for any set of parameters, a (stable80

or unstable) bare soil b = 0 solution,81

∂b

∂t
= D∇2b− αb+ βb2 − γb3. (1)

Here D is the diffusion constant, The control parameter82

α represent the effect of the (changing) environment, β is83

a positive constant that represents local facilitation, and84

the positive constant γ accounts for the finite carrying85

capacity of the system. When the environment is hostile86

[positive value of ”stress parameter” α, in Eq. (1)] the87

bare soil (desert) state b = 0 is locally stable but local88

facilitation may allow the system to have another stable89

state at a finite vegetation density. Negative values of α90

correspond to better environmental conditions, where the91

bare soil is unstable (See the bifurcation diagram (lines)92

in Figure 1).93

The deterministic equation (1) admits one or two ho-94

mogenous solutions, depending on the value of α. Catas-95

trophic desertification occurs beyond the tipping point,96

i.e., when α ≥ β2/(4γ), where the system collapses to97

its desert state following a saddle-node bifurcation. To98

recover vegetation, the stress parameter α should cross99

zero (transcritical bifurcation), so the regime shift is irre-100

versible.101

When the initial conditions are inhomogeneous, the102

desert invades the vegetation to the right of the Maxwell103

(melting) point (MP) αm > 2β2/(9γ), and vegetation in-104

vades on its left side (see Fig. 1). Accordingly, when105

the system is exposed to local disturbances that may form106

confined spatial domains of the alternative stable state,107

there is no sudden collapse at the tipping point. Instead, 108

one expects a “gradual global transition” at the Maxwell 109

point, where any local disturbance which is large enough 110

to reach the basin of attraction the alternate state yields 111

a propagating front that spreads until the invading phase 112

takes over the system. This phenomenon was emphasized 113

recently by Bel et. al. [17] who stressed that, in such a 114

scenario, signals that indicate the proximity of the tipping 115

point, like critical slowing down, are not relevant anymore. 116

The difference between theories that emphasize the tip- 117

ping point and the approach of [17] has to do with the rate 118

of variation of the external parameters. This distinction is 119

analogous to the situation in equilibrium first-order tran- 120

sitions. When the external parameter (temperature, mag- 121

netic field) is varied rapidly, the transition occurs abruptly 122

at the spinodal point, where the metastable phase becomes 123

unstable. Under slow sweep, thermal fluctuations are al- 124

ways strong enough to produce alternate phase nuclei that 125

may expand and take over the system, so the transition 126

takes place at the melting point. 127

However, stochasticity in an ecosystem occurs even 128

when rates of demographic processes (birth, death, mi- 129

gration etc.) are independent of time, reflecting the ran- 130

domness of the birth/death process at the individual level 131

[4,11,18,19]. For example, if B represent a unit of biomass 132

(a shrub, say), the quadratic term of Eq (1) may emerge 133

as the deterministic limit of the process B+B
β−→ 3B, the 134

cubic term emerges from B+B+B
γ−→ ⊘ and the linear 135

term corresponds to B
α−→ ⊘ (if α ≥ 0) or B

α−→ 2B if 136

α ≥ 0. Demographic stochasticity of this kind yields, for 137

a population of size N , fluctuations amplitude that scale 138

with
√
N . This demographic noise may be the driver of a 139

local disturbance that leads to the fixation of the invading 140

phase, a process that was analyzed recently in [16]. 141

As mentioned above, demographic stochasticity has an- 142

other aspect, that have no analog in equilibrium thermo- 143

dynamics. Once the discretization of agents is taken into 144

account, the desert state becomes absorbing and is not af- 145

fected by fluctuations. The phase of a spatial system de- 146

pends on the ratio between the rate of these stochasticity- 147

induced local extinctions and the recruitment of bare-soil 148

patches by neighboring vegetation. The result is a second- 149

order extinction transition (ET), in which the vegetation 150

density decreases continuously until it reaches zero at the 151

transition point [20]. As shown by Kockelkoren and Chaté 152

[21], this transition belongs to the directed percolation 153

universality class [22]. 154

In figure 1 we show the steady state density of vegeta- 155

tion for a 1d stochastic model with different values of α 156

and for different strength of the demographic noise, to- 157

gether with the deterministic bifurcation diagram. Our 158

simulation technique is close to the split-step method 159

used by [21, 23, 24]: an Euler integration of Eq. 1 (with 160

∆t = 0.001, 1d lattice of L = 10000 sites, asynchronous 161

update) is interrupted every ζ (note that large values of 162

ζ corresponds to weak demographic noise and vice versa) 163
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Fig. 1: The desertification transition. The lines represent
the possible steady states of the spatially homogenous solution
of Eq. (1) with β = 0.4, γ = 0.02. Full lines correspond to
stable fixed points, dashed lines to unstable points. The tran-
scritical bifurcation at α = 0 and the saddle-node bifurcation
(tipping point) at α = 2 are clearly seen. The Dash-dot line
indicates the Maxwell point. The symbols are the steady state
density obtained from numerical solutions of the process with
different αs for D = 0.2, ζ = 30 (circle), D = 0.2, ζ = 60 (dia-
mond), D = 10, ζ = 30 (Square), D = 0.2, ζ = 3000 (Triangle).
The transition point cannot cross the Maxwell point.

generations when the value of bi at every site i is replaced164

by an integer, taken from a Poisson distribution with an165

average bi.166

Of special interest are three phenomena demonstrated167

in Figure 1:168

• The transition is indeed continuous, and we have ver-169

ified that it belongs to the DP equivalence class, by170

measuring the critical exponents at the transition (re-171

sults not shown).172

• The ET point is always to the left of the Maxwell173

point. This feature is also expected, since any noise174

allows eventually for a large local ”hole” and to the175

right of the MP this disturbance spreads [17], so the176

steady state must be empty.177

• Figure 1 also indicates that, at least when the noise178

is relatively weak, the vegetation steady state density179

decays linearly as the system approaches the extinc-180

tion transition. This feature is not trivial: the DP181

theory predicts a steady state density that scales like182

∆β̃ , where ∆ is the distance from the transition and183

β̃ = 0.27 in 1d. We have verified that this is indeed184

the case very close to the transition point (result not185

shown here). However, as the system should converge186

to the deterministic limit at large ∆, the transition187

region is very narrow (for a general analysis of the188

transition zone problem, see [25]) and the decay of189

the steady-state density appears to be linear almost190

all the way down to b = 0.191

The hypothesis of a second-order, reversible desertifica-192

tion transition with a linear decay of the steady-state den-193

sity in the transition regime, is supported by two pieces194

of data. Reversibility is suggested by a few recent studies,195
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Fig. 2: The mid-Holocene desertification of the Sahara, as ex-
pressed by the increase of the flux of terrigenous dust, during
the last 9000 years (inset) and during the transition period
(main panel, modified from [31]). The transition is assumed
to be triggered by a gradual and weak decline of the Northern
Hemisphere summer insolation [2, 31].

showing a recovery from desertification when the exter- 196

nal pressure (grazing, in most cases) has been removed 197

[26–30]. Some evidence for linearity are suggested in Fig- 198

ure 2, where the desertification process of the Sahara dur- 199

ing the mid-Holocene is traced through the eolian dust 200

record of Site 658C [31]. The flux of terrigenous sediments 201

seem to grow linearly during the transition period. If this 202

flux reflects the steady state density of an adiabatic envi- 203

ronmental change, this linear dependence is in agreement 204

with the predictions of our model. 205

Note that the Sahara desertification data are usually in- 206

terpreted (see, e.g., [2]) as an evidence for a catastrophic, 207

first order transition, since the growth of terrigenous sedi- 208

ments percentage through time appears to be exponential. 209

However, as stressed in [32], the use of component per- 210

centages in marine sediments can be misleading, because 211

the total sediment must always sum to 100%. The long 212

timescales involved (about 500 years) also suggest an al- 213

ternative mechanism. 214

The quantum regime. – What happens in the pa- 215

rameter region that lays between the extinction and the 216

Maxwell point? On the one hand if the desert state is not 217

absorbing, vegetation invades the bare soil for these pa- 218

rameters. On the other hand, with absorbing state taking 219

into account the system is beyond the extinction transi- 220

tion. How desertification occurs? To address this issue we 221

have studied the system with inhomogeneous initial con- 222

ditions and monitoring the growth of the overall density 223

vs. time we have measured the front velocity v. 224

In the deterministic limit one expects a finite velocity 225

that vanishes (and changes sign) only at the MP. Indeed, 226
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Fig. 3: Invasion velocity renormalization. Front velocity is
shown against α. Squares represent the steady state density of
the stochastic simulation for the same value of α (in arbitrary
units). Circles represent the front velocity measured in the
simulation. Parameters are β = 0.4, γ = 0.02, dt = 0.01, D =
0.2, ζ = 30. Given the numerical inaccuracies close to the tran-
sition, these two sets of data seem to reach zero at the same
point. The solid line correspond to the analytic expression 2.
(for these parameters αMP = 1.778). Front velocity was mea-
sured by monitoring the linear growth rate of the b density.
The initial conditions are vegetation for 5000 < x < 10000 and
bare soil for 1 < x < 5000.

the velocity satisfies,227

v = ±
√
2D

(
−α

m
+

m

2

)
(2)

where228

m ≡

√
−α+

β2

γ

(
1

2
+

√
1

4
− γα

β2

)
. (3)

Note that the front change also its characteristic, from a229

Ginzburg-Landau front to Fisher type II, at the transcriti-230

cal bifurcation [33,34]. Stochasticity without an absorbing231

state may modify the location of the MP, but the general232

structure remains the same [35]. In our case, where the233

system admits an absorbing state, the situation is differ-234

ent. As shown in Figure 3, under demographic stochastic-235

ity the velocity renormalizes to zero at the extinction tran-236

sition point, so there is a whole parameter region where237

the velocity vanishes.238

The emerging insights are summarized in Fig 4. For239

every set of parameters (diffusion, noise, nonlinear inter-240

action) the system will be found in one out of four different241

phases. Above the extinction transition (region 1) vege-242

tation saturates to an equilibrium value and will invade243

a nearby bare-soil region. The steady state density van-244

ishes at the extinction transition, but desertification may245

take place in different modes. In the “quantum” region 2246

(between the ET and the MP) the desert does not invade,247

and the transition comes about by accumulation of local248

extinctions eventuating a global collapse. In region 3 these249

collapses are accompanied by the desert invasion as pre-250

dicted by [17] and the dominant effect depends on the size251

Fig. 4: Modes of desertification - a schematic cartoon.
The steady-state density of vegetation (red line) approaches
zero at the extinction transition. In the “quantum” regime
between this point and the Maxwell point (region 2) the deser-
tification happens in a series of local collapses. In region 3 the
desert invades vegetation, and the local collapses are superim-
posed on front propagation. In region 4 the collapse is global,
and the vegetation decays uniformly and exponentially - this
is the scenario of catastrophic regime shift.

of the system, the rate of local extinctions and the velocity 252

of the front. Finally, beyond the tipping point (Region 4) 253

the deterministic active fixed point loses its stability and 254

vegetation collapse exponentially, simultaneously all over 255

the place. 256

All in all, when demographic noise and the absorbing 257

state are taken into account, one finds that if environmen- 258

tal changes (like the rate of variations of α) are adiabatic, 259

the phase transition is a continuous, second order one, 260

without hysteresis. The catastrophe scenario - a global 261

collapse after the crossing of the tipping point, followed by 262

an irreversible transition between alternative stable state, 263

can never be realized if the sweep of the external param- 264

eter is infinitely slow. As long as ζ < ∞ the transition is 265

second order and, even more importantly, it cannot take 266

place beyond the Maxwell point, so the tipping point is 267

completely disparate from the extinction transition. This 268

is also the case for theories with local disturbances, even 269

without an absorbing state [17], but in that case the tran- 270

sition is discontinues (involves an order parameter jump) 271

and sticks to the MP, while the quantum transition oc- 272

curs before it. Accordingly (as already pointed out [17]), 273

the attempts to identify an impending catastrophe by an- 274

alyzing fluctuation dynamics, utilizing the critical slowing 275

down as an early warning signal, appears to be useless. 276

The studies of tipping points and early warning sig- 277

nals may be relevant to the desertification problem only 278

if the environmental change is non-adiabatic, where the 279

irreversibility has to be interpreted as a dynamical hys- 280

teresis [36]. This behavior is demonstrated in Figure 5. 281

Dynamical hysteresis is unavoidable close to the extinc- 282

tion transition when the response of the system becomes 283

slower than the pace of environmental change, but its ef- 284

fect may be very weak. 285

As each of the regions 1-4 (in Fig. 4) has its own charac- 286

teristic timescale, the conditions for a ”rapid” sweep rate 287

are different in different regions. The deterministic pic- 288

ture is relevant only when the sweep rate for α is faster 289

than any other process in the system. However, in such 290

a case the implementation of critical slowing down indi- 291

p-4



Quantum Desertification

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

(a)

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

V
eg

et
at

io
n 

de
ns

ity (b)

−1 0 1 2 3
0

10

20

 α

(c)

Fig. 5: Dynamical hysteresis: Vegetation density (Dash-
dot) vs. α, depicted with the deterministic bifurcation diagram
as a background (Solid), for α = −1.5 + s · t, s = 10−5, with
ζ = 40 (a) 200 (b) and 1000 (c).

cators close to the tipping point, assuming that one can292

trace the relaxation of fluctuations before the shift, may293

also become inefficient.294

Apparently, a more reliable early warning indicators295

may be obtained from the monitoring of voids dynam-296

ics. In region 1, the chance of a bare-soil patch to grow is297

inversely correlated with its size. Region 2 is characterizes298

by stable domain walls, and the only process that allows299

for bare-soil cluster to grow is a merge with nearby void.300

In region 3 and the chance to grow is positively correlated301

with the cluster size. We intend to pursue these ideas in302

future studies.303
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