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Abstract The chance of local extinction is high dur-
ing periods of small population size. Accordingly, a
metapopulation made of local communities that sup-
port internal population cycling may face the threat
of regional extinction if the local dynamics is coher-
ent (synchronized). These systems achieve maximum
sustainability at an intermediate level of migration
that allows recolonization but prevents synchroniza-
tion. Here we implement an individual-based simula-
tion technique to examine the maximum persistence
condition for a system of patch habitats connected by
passive migration. The models discussed in this paper
take into consideration realistic elements of metapopu-
lations, such as migration cost, disordered spatial struc-
ture, frustration and environmental noise. It turns out
that the state with maximum anti-correlation between
neighboring patches is the most sustainable one, even
in the presence of these complications. The results
suggest, at least for small systems, a model independent
conservation strategy: coherence between neighboring
local communities has, in general, a negative impact,
and population will benefit from intervention that in-
creases anti-correlations.
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Introduction

Growing concern over species extinction and the
loss of biodiversity has led to many studies about
the effects of habitat fragmentation on the sustaina-
bility of a spatially structured population (Fahrig 2003;
Bascompte and Sole 1996; Kareiva 1987; Andren 1994;
Debinski and Holt 2000; Keymer et al. 2000; Kruess
and Tscharntke 1994; Pimm 1998; Lindenmayer and
Fischer 2006; Earn et al. 2000). The extensive liter-
ature dealing with these topics has a very specific
goal: developing the ability to predict the effect of an
environmental change (urban development, new roads,
climate shifts) on the persistence of species and eco-
communities. Within this general framework, the con-
cept of a metapopulation (Levins 1969) has received
a lot of attention (Hanski 1999; Hanski and Gilpin
1991; Hanski and Ovaskainen 2000; Ricklefs and Miller
2000). In a metapopulation, the system survives due to
recolonization of empty patch habitats by immigrants
from other spatial patches. However, these turnover
events are relatively infrequent, therefore the intra-
patch processes must also be taken into consideration.

An analysis of ecological dynamics requires, beyond
a good set of empirical measurements, a reliable con-
ceptual framework within which the empirical studies
can be analyzed and interpreted. A thorough under-
standing of the capabilities and shortcomings of the
modeling technique is thus a crucial step towards ratio-
nal planning of conservation policies. In particular, al-
most any real ecosystem (and even many experimental
setups) admits highly complex structure (spatial, age)
and is plagued by various types of noise [demographic,
environmental (Bonsall and Hastings 2004; Matthies
et al. 2004)]. Under these circumstances it is very hard
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to deduce from the noisy data the exact dynamical
law that governs abundance variation through time, so
accessible models must neglect many of the features
of the real system. Therefore, it would be desirable
to identify the main factors that determine population
sustainability by conducting a survey of many generic
models under a wide range of realistic complications.
To evaluate the chance of extinction, or to forecast the
effect of human intervention, it is better to implement
a scheme that does not depend on the features of any
specific model, but rather takes into account the generic
factors that affect population dynamics.

One of these factors is spatial coherence. Coherence,
or synchronization among spatial patches (throughout
this paper we refer only to zero-lag synchronization),
is the case where abundance fluctuations are (posi-
tively) correlated among different colonies (Liebhold
et al. 2004; Ranta et al. 1995). The primary mechanisms
that synchronize abundance variation in different patch
habitats are the movement of individuals between lo-
cal populations and spatially correlated environmental
fluctuations (the Moran effect).

Spatial coherence may facilitate extinction. A
metapopulation survives local extinctions due to re-
colonization of empty patches by immigrants from
nearby local communities. When the population of a
species reaches its lowest level simultaneously in all
habitat patches, there is a severe risk of regional ex-
tinction (Allen et al. 1993; Heino et al. 1997; Earn
et al. 2000; Reichenbach et al. 2007). The importance
of spatial coherence has been demonstrated in a wide
variety of theoretical works dealing with periodic and
chaotic dynamics of one species and victim-exploiter
systems (Keeling et al. 2000; Abta et al. 2008; Seri
and Shnerb 2010; Briggs and Hoopes 2004; Adler 1993;
Abta et al. 2007; Ben-Zion et al. 2010b; Abbott 2011).
Many experiments (Holyoak and Lawler 1996; Kerr
et al. 2006; Dey and Joshi 2006; Molofsky and Ferdy
2005; Kerr et al. 2002; Vasseur and Fox 2009) also
suggest that an increase in the migration rates may
decrease the lifetime of the system as it induces spatial
synchrony. On the other hand, some level of migra-
tion is necessary to keep the metapopulation alive,
since it reduces the relative importance of abundance
fluctuations and allows for recolonization of empty
patches. The challenge is to find the optimal level of
connectivity/migration and to suggest general guide-
lines for practical situations.

In a recent paper (Ben-Zion et al. 2010b) we have
shown that the lifetime of the metapopulation un-
der consideration peaked when the system reached a

“checkerboard” state, i.e., when the correlations be-
tween neighboring sites were most negative. In this
state, when the abundance in a certain habitat patch
is low, its neighboring patches have large populations
and thus the chance of recolonization is higher and the
“buffering” against stochastic fluctuations is stronger.

This phenomenon involves two nontrivial effects.
The first is the fact that migration may decrease the cor-
relations, and even induce anti-correlations, between
two neighboring patches. This counterintuitive behav-
ior can be observed in panel (d) of Fig. 3 below:
at low migration rates the correlation becomes more
negative with the rate of movement. This has to do
with the appearance of attractive orbits resulting from
the deterministic dynamics (Kaneko 1990a, b; Kaneko
and Tsuda 2000). Second, the local stability (Lyapunov
exponent) of these attractive orbits has, in practice,
nothing to do with the chance of extinctions. Since the
system is subject to noise it eventually moves away
from the linear stability region and preforms a long
excursion in its way back to the attractive orbit. Ex-
tinction is plausible only during these long excursions
(Ben-Zion et al. 2010b; Hastings and Wysham 2010).
In the checkerboard state the local abundance at any
instant takes an “up-down-up-down” state where mi-
gration from neighboring sites compensates for local
fluctuations and the excursions are of relatively low
amplitude.

The main goal of this work is to show that the
results of (Ben-Zion et al. 2010b) hold when realistic
complications are introduced into the simulations. Al-
though we did not prove our results analytically, this
numerical study covers many common scenarios that
occur in metapopulation dynamics. For systems like
those considered below (a small number of patches of
similar size) we suggest, based on this work, a simple
working principle: better persistence can be achieved
by manipulating the system connectivity (or animal
migration rate) such that the anti-correlations between
neighboring patches becomes maximal. This maximum
sustainability criteria may be implemented as a generic
conservation strategy, which does not require the reli-
able identification of the underlying local dynamic. In
the last section we will discuss some technical aspects
related to the implementation of this maximum anti-
correlation strategy.

To better understand the conditions under which the
problem of coherence becomes important, let us con-
sider a local community with a population dynamic that
satisfies, up to demographic stochasticity, the Ricker
map with nonoverlapping generations (Ricker 1954;
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May and Oster 1976; Hastings 1996). In its fully de-
terministic version, the population at generation t + 1
is related to the population in the former generation,
Nt, by

Nt+1 = Nter(1−Nt/N0) (1)

where N0 sets the carrying capacity of the system, since
above this density the population starts to decline. A
metapopulation may be modeled by a collection of
patches with the same parameters r and N0, where
the local map Eq. 1 alternates with passive diffusion
movement among patches. A large area patch may
be represented by a few units connected by strong
migration.

In the parameter regime r ≤ 2 the Ricker map admits
an attractive fixed point, so the population density con-
verges to some equilibrium value. In this case effects of
coherence are small. For higher r, on the other hand,
the population varies in time: a period-2 attractive
orbit bifurcates into a period 4 and so on, until a fully
chaotic orbit appears at r = 2.6924.... The chance of
local extinction due to demographic fluctuations (the
effect of environmental noise will be considered later
on) is much larger when the population reaches its
lowest level.

To find the chance for local extinction by demo-
graphic noise one should compare the infimum (lowest)
value of Nt (for a given r, this number is determined
by N0) to the amplitude of demographic fluctuations.
When these two numbers are of the same order of
magnitude, extinction is plausible during the periods
when the local abundance becomes small. When inf{Nt}
is much larger than the fluctuation amplitude, local
extinctions are rare, and the average extinction time
grows exponentially with N0 (Kessler and Shnerb 2007;
Ovaskainen and Meerson 2010; Elgart and Kamenev
2004). If this is the case the possibility of regional
extinction is negligible and the chance of exogenous
catastrophes is probably larger than the likelihood of
death attributable to the intrinsic dynamics.

Spatial coherence becomes an important factor when
the local dynamics vary in time and Nt occasionally
enters the dangerous zone where extinction due to
stochastic fluctuations is plausible. We identify these
types of systems as occasionally extinction prone: a lo-
cal community from time to time reaches the extinction
region owing to the variations induced by its intrinsic
dynamics. When the local population is occasionally
extinction prone, an isolated population goes extinct
quite rapidly and metapopulation persistence depends
on migration.

Many simple ecological models can describe an occa-
sionally extinction prone system. First, all models that
admit zero infimum (i.e., when the deterministic trajec-
tory grazes the zero population state), such as the logistic
map with r=4, the Nicholson-Bailey map (Nicholson
and Bailey 1935) for host-parasitoid dynamics and the
marginally stable Lotka-Volterra (Lotka 1920; Volterra
1931; Murray 1993) model with Holling’s type I func-
tional response (Holling 1965). Other models be-
come extinction prone when the infimum population is
small enough, e.g. the Ricker map for the N0 values
considered below, the Rosenzweig-MacArthur model
(Rosenzweig and MacArthur 1963) and the third case
of the hawk-dove game considered by Durrett and
Levin (Durrett and Levin 1994; Seri and Shnerb 2010).
The class of occasionally extinction prone models does
not include those used to describe extinction robust
systems, for which the number of individuals is al-
ways large with respect to the size of the abundance
fluctuations, or systems that support equilibrium den-
sity (like logistic growth with overlapping generations),
where coherence has no role. For these systems an
increase in the migration or the connectivity is always
beneficial.

In (Ben-Zion et al. 2010b; Abta et al. 2007, 2008; Seri
and Shnerb 2010) we considered many extinction prone
models. Here, like in (Kessler and Shnerb 2010), we
show results only for the Ricker system that allows for
faster and easier simulations, but the results presented
below have been verified for the other models men-
tioned above as well. As far as can be deduced from
numerical experiments, it seems that the maximum
anti-correlation strategy yields the longest persistence
time for occasionally extinction-prone systems.

As explained above, the passage of individuals be-
tween spatial patches is crucial for the persistence of
a metapopulation. When the extinction time of an iso-
lated local community is larger than, or comparable to
the time needed to recolonize an empty patch, there
is no doubt: increased migration or increased connec-
tivity are always beneficial (Durrett and Levin 1994;
Barkham and Hance 1982; Snyder and Nisbet 2000).
However, if the rate of migration is too strong it may in-
duce spatial coherence in a finite system and expose the
metapopulation to the danger of regional extinction.
Accordingly, in occasionally extinction prone systems
the dependence of the persistence time on the spatial
connectivity, or the migration rate, is nonmonotonic.
Practically, one can manipulate the connectivity by
changing the topology of the system allowing more
“corridors” between patches (Tewksbury et al. 2002;
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Beier and Noss 1998; Gonzalez et al. 1998), or by
facilitating the passage of individuals. Sometimes there
is an increase in the mortality of agents upon migration,
a phenomenon we refer to as the migration cost (Motro
1982, 1983; Hamilton and May 1977; Taylor 1988). This
possibility is considered below.

For the class of dynamics discussed here, the optimal
connectivity is an intermediate one: large enough to
allow for recolonization events, yet not so large as to
induce coherence. In the intermediate regime, local
populations oscillate incoherently and local extinction
is followed by recolonization as immigrants arrive from
neighboring patches. Plotting the lifetime of the sys-
tem vs. its connectivity results in a typical bell shape
that peaks at intermediate connectivity. In (Ben-Zion
et al. 2010b) we showed that the lifetime peaked when
the spatial pattern looked like a checkerboard, which
is equivalent to maximum anti-correlations between
neighboring patches. That paper dealt mainly with the
abstract case of population dynamics on a lattice, i.e.,
where all habitat patches are the same and are orga-
nized in one- or two-dimensional arrays. Here we check
the efficiency of the maximum anti-correlation strategy
for more realistic scenarios (such as non bipartite spa-
tial arrangements) and under other types of noise. We
will show that it is indeed the maximum anti-correlation
state (not necessarily in a checkerboard pattern) which
is optimal in all the situations considered.

Before presenting the methods and the results we
would like to clarify that the maximum anti-correlation
strategy studied here is not evolutionary stable. In
the absence of migration costs it is always beneficial
to avoid kin competition by maximizing the dispersal
distance or the migration rate. We have carried out
numerical experiments of competition between two
species with different migration rates and identical local
dynamics. In all cases the species with the larger migra-
tion rate (or larger range of natal dispersal) wins, even
when it leads to coherent variations and regional ex-
tinction. In models that explain the evolution of dispersal
rates, such as the Hamilton-May model (Hamilton and
May 1977; Comins et al. 1980), the factors that balance
the effect of kin competition are migration costs and
local catastrophes, both affecting the average num-
ber of surviving offspring in the next timestep. Ro-
bustness against global effects, like coherence and re-
gional extinction, cannot protect the population from
invasion by mutants with a higher dispersal rate or
range. Our results, thus, are relevant for the analysis
of experiments and may be used to improve conserva-
tion strategies, but one should not expect natural sys-
tems in the wild to spontaneously take a checkerboard
pattern.

Materials and methods

The time evolution of a population density described by
a chaotic map like Eq. 1 cannot be solved analytically,
and all the more so in the case of a coupled map where
each map represents a single habitat patch, and the
maps are coupled by migration. To get a reliable esti-
mation of the system sustainability these deterministic
equations could be integrated numerically over time,
starting from typical initial conditions. However this
method would involve picking an arbitrary threshold
for extinction. So instead we chose to simulate the
same dynamics with discrete individuals, i.e., to take
demographic stochasticity into account by simulating
the Ricker process with Nt that admits only integer
values. This model is more appropriate for two reasons:

1. This method allows for a natural definition of (local
and global) extinction: since the number of individ-
uals is an integer, it may reach zero. (Other types of
noise are considered below and are also simulated
with individual-based dynamics.)

2. As explained by (Ben-Zion et al. 2010b; Kessler
and Shnerb 2010), a set of diffusively coupled
chaotic maps may admit many attractive orbits
with different periodicities. Once such an attractive
orbit appears, one may guess that the system is
not extinction prone anymore since the population
never decreases below some minimum. However,
in (Ben-Zion et al. 2010b; Kessler and Shnerb 2010)
we showed that some of these attractive orbits
are not stable against noise such as demographic
stochasticity. The erratic dynamics of a chaotic tra-
jectory cannot be considered noise in that sense:
nondeterministic noise should be added.

To simulate the discrete version of the Ricker map
we have chosen r such that er is an integer (this
somewhat simplifies the numerical procedure but it is
not a necessary step). The map Eq. 1 is then inter-
preted as follows: on each island any agent produces
exactly er offspring and dies. The chance of a given
offspring to reach maturity depends on the number of
competitors it has in the same patch and is given by
exp(−rNt/N0). The total population on the island at the
end of the reproduction-competition step is a random
integer taken from the binomial distribution B(q, N),
where the number of trials is N = Ntexp(r) and the
chance of success in one trial is q = exp(−rNt/N0). The
average number of individuals in the next generation,
Nt+1, is given by q · N, in agreement with Eq. 1.

After the reproduction-competition season comes
the migration step, where any individual stays in its
birthplace with probability 1 − ν and decides to migrate
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with probability ν. The chance of an individual surviv-
ing the migration event is given by p; when p = 1 there
is no migration cost.

In the large N0 limit demographic noise is negli-
gible and the dynamics obey the deterministic equa-
tion (Ben-Zion et al. 2010b; Kessler and Shnerb 2010)
that describes the time evolution of a diffusively cou-
pled chaotic map (Kaneko 1990a):

N j
t+1 = (1 − ν)N j

t er(1−Nt/N0) + pν
∑

i

Ni
t .e

r(1−Nt/N0) (2)

The index i runs over all sites connected to the jth site.
The goal of our numerical experiments is to identify the
νopt that maximizes the persistence of a system Eq. 2 to
which demographic stochasticity has been added.

Results

Migration cost

The first case we would like to study is migration that
has a cost. For a ring of four identical sites we have
simulated the dynamics numerically as explained in the
methods section. The local abundance N on a single
habitat patch over time provides us with a time series.
The first three panels of Fig. 1 show, for different values
of cost p, an orbit diagram of the deterministic system
obtained from numerical integration of Eq. (2). For
each value of ν the population N (of one arbitrarily
chosen site) was marked on the corresponding vertical
column.

As demonstrated by (Ben-Zion et al. 2010b), assess-
ing the stability of these deterministic orbits using a
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Fig. 1 A four-patch system of Ricker maps, coupled by density
independent migration with periodic boundary conditions (ring).
The chance of any individual leaving its location is ν, and the
probability of surviving the migration is p. The orbit diagram
for the deterministic system with r = 2.995 is shown in the first
three panels for different values of p. The region in the parameter
space colored green is the values of ν for which an up-down-
up-down (UDUD - checkerboard) configuration appears. In this
case local extinctions happen when the neighboring patches are
densely populated. The black region corresponds to UUDD

spatial configurations. Red indicates full spatial synchronization.
In the blue regions the local chaotic dynamics win and there
is no spatial order; this may happen if migration is weak (the
narrow blue area on the left) or in the transition region be-
tween two attractors. The survival probability (upon migration) is
p = 0.8 p = 0.5 p = 0.35 for a, b and c respectively. Panel d
shows the average time-to-extinction of the individual-based dy-
namics (N0 = 10) for all three cases. The highest lifetime always
appears in the UDUD region
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local analysis technique such as the Lyapunov exponent
may be misleading. The most important factor is the
level of decoherence in the system, which is indicated
here by the colors. Green indicates the anti-correlation
region where the local increase of the population of
a given site is followed by a local decrease in the
neighboring sites (checkerboard). Since the actual sys-
tem has four sites (each connected to two neighbors),
the green is the “up-down-up-down” (UDUD) phase.
Black indicates the region where an “up-up-down-
down” (UUDD) phase appears. In the blue regions the
dynamics are chaotic and in the red region all of the
patches are synchronized (full coherence).

Panels (a–c) of Fig. 1 differ in a single parameter:
the chance p of surviving a migration event. Panel (d)
shows the average lifetime of the system in all three
cases and demonstrates an important property: the
optimal migration rate grows with the cost. Although
migration becomes more “expensive”, it pays for the
system to increase the migration despite the cost. This
result emphasizes the importance of maximum anti-
correlation on the system’s persistence, since as the
checkerboard dynamics move to higher values, so does
the νopt, causing the system to reach maximum sustain-
ability at a higher migration rate. This phenomenon is
further depicted in Fig. 2 for the whole p − ν space:
νopt keeps an almost fixed distance from the right edge
of the checkerboard region. Of course the maximum
lifetime of the system, τ(νopt), decreases with the cost,
as seen in Fig. 1d.
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Fig. 2 The overall phase diagram for the 4-patch system. The
colors indicate the different coherence regions as explained in
Fig. 1 in the p − ν plan. The cyan dotted-line corresponds to the
maximum lifetime obtained from individual-based simulations.
Clearly, this maximum corresponds to the UDUD region of the
deterministic map

Figure 1 also demonstrates the irrelevance of what
are perceived to be the stability features of the de-
terministic orbits. In Fig. 1a, for example, the system
supports a stable orbit at ν = 0.2, and a zero grazing
chaotic trajectory at ν = 0.23. However, there is no
discontinuity, or any other pronounced effect, in the
lifetime curve at Fig. 1d. Between ν = 0.3 and 0.4 one
observes another window of stability, but the lifetime
decreases continually in this region: there is no benefit
from entering the “stable” window. When the system
was simulated with fluctuating migration rates, like ν

alternating between 0.15 and 0.23 or 0.32, the lifetime
obtained was some number between the lifetimes asso-
ciated with the pure cases, again with smooth depen-
dence and no discontinuities.

Complex spatial structure: the star network

Real metapopulations never occupy the vertices of a
squared lattice. In most cases large and small habitat
patches form some sort of scattered pattern in space,
and a perfect checkerboard-like arrangement is not a
realistic option. To check the effect of irregular spatial
arrangement, two representative cases were chosen: the
star network and an isosceles triangle. In both cases the
spatial topology does not allow for bipartition.

The effect of connectivity on spatial synchrony
has been investigated numerically by Holland and
Hastings (2008), using deterministic Rosenzweig-
Macarthur dynamics. They have found that the asymp-
totic state depends on the initial conditions, i.e., the
system supports a few attractive manifolds, each with
its own basin of attraction. In many cases they observed
long transients before the system settled on the steady
state. As shown in (Ben-Zion et al. 2010b; Hastings
and Wysham 2010), the introduction of demographic
noise allows the system to escape the deterministically
attractive state and the main risk of extinction occurs
during the transients, so the question of what happens
when noise is superimposed on spatial irregular net-
works should be considered.

In (Ben-Zion et al. 2010b) we already examined a
slight deviation from the bipartite lattice: a two dimen-
sional array with a “defect”, that is, one inaccessible
habitat patch. It was shown that the system achieved
maximum sustainability when the migration rate led
to a checkerboard configuration swith some distortion
close to the defect. Here we consider smaller systems
where the spatial arrangement cannot be a checker-
board or an almost checkerboard, yet we will show that
the robustness peaks when the spatial anticorrelations
are as large as possible.
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The star network sometimes serves as a good proxy
for a wide class of disordered networks (Ben-Zion et al.
2010a). The per-capita chance of migration is identical
among all of the nodes, but they differ in the possible
destinations for an emigrant: from an end node an
individual must jump to the central site, but can choose
among all of the end nodes if originating from the
center.(see Fig. 3a).

Figure 3b presents the orbit-diagram of the (deter-
ministic) star network. The parameter region where
the central site is anticorrelated with the end nodes is
colored green. In this region the individual-based simu-
lation presented in Fig. 3c shows the life-time peak and
(d) shows the anti-correlation between the central node
and the average over all peripheral sites. Indeed, the
maximum anti-correlation state is the more sustainable.

However, this system supports a secondary peak at
much higher migration rates (see inset, panel c). This

peak is not related to the appearance of a checker-
board, but instead is a result of the spatial heterogene-
ity. As explained in (Ben-Zion et al. 2010a), density
independent migration within networks leads to accu-
mulation of agents on the “hubs”, i.e., on the sites
with more links. This is a simple outcome of the laws
governing migration in our model: every agent that
leaves the end node must choose the center as its
destination. When there are large differences between
the populations on center and end nodes, the effective
behavior of the system is as if there are different N0s
on the center and the peripheral nodes. The time it
takes for a single “oscillation” (that is the time it takes
the local population to reach high levels when starting
from a low density, and decline back) depends on the
population size. The system thus corresponds to local
populations that oscillate with different periods and are
coupled by migration. This scenario has been analyzed

(a)
0 0.05 0.1 0.15 0.2

2

6

10

ν

N

(b)

0 0.05 0.1 0.15 0.2
0

5

10

15
x 104

ν

0.7 0.8 0.9 1

50

150

250

ν

(c)

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1

ν

Corr

(d)

Fig. 3 The Ricker system on a star network appears in a. The
orbit diagram for the deterministic system with r = 4.304 is shown
in b. Here the maximum decoherence state (green) corresponds
to an up-down spatial configuration, i.e., the population density
on the central node is high, while the end nodes are almost
empty and vice versa. The average time-to-extinction of the
individual-based dynamics c peaked in the intermediate regime.
The correlation coefficient between the central node and the

average over all peripheral sites is shown in panel d the maximum
decoherence state is indeed the most sustainable. The existence
of another peak at high migration is emphasized in the inset
of panel c. Unlike the low migration peak, the large peak is
deterministic, i.e., corresponds to the appearance of stable orbits
(negative Lyapunov exponents) in the bifurcation diagram, for
N0 = 10
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in (Yaari et al. 2008), and was shown to support stable
orbits even without demographic noise. Unlike the low-
migration peak, the location of this sustainability point
at high migration may be inferred from an analysis of
the linear stability of the deterministic orbits.

A second case of a small disordered array is the
isosceles triangle, the results of which are depicted in
Fig. 4. Here we investigated a range of scenarios, from
the case where patches 1 and 2 are closer (there is
more movement between them) while patch 3 is more
isolated, to the opposite situation where the distance
between 1 and 2 is large. In all cases, the probability
of an individual leaving site 1 (or 2) is ν + ν0/2, while
the chance of leaving 3 is ν0. An emigrant from 3 jumps
to 1 or 2 with equal probability, but an individual that
leaves 1 (2) moves to 2 (1) with a chance 1 − μ and to
3 with a chance μ. The parameter μ is not arbitrary:
μ ≡ ν0/[2(ν + ν0/2)]. With that, the flow of individuals
along the links 1 ↔ 3 and 2 ↔ 3 if equal and symmetric,
with ν0/2 immigrant on average, and the link 1 ↔ 2 is
also symmetric with migration rate proportional to ν.
By varying ν we can control the proximity of 1 and 2:
the case ν = ν0/2 corresponds to a equilateral triangle,
if nu = 0 there is no direct transfer of individuals be-
tween 1 and 2 (1 ↔ 3 ↔ 2) and for large ν the 1–2 link
is much stronger than 1–3 and 2–3.

Figure 4 shows that, when varying the migration
between 1 and 2, maximum sustainability appears when
the anticorrelation between 1 and 2 peaks, independent
of the correlations with 3. Thus it seems that for small
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Fig. 4 A triangular setup (see sketch, right panel). When the
migration rate between 1 and 2, ν, varies, the maximum sustain-
ability appears when the correlations between 1 and 2 (lower
panel, left) are most negative

scattered arrays one can manipulate the connection
between two habitat patches to achieve anti-correlation
and this will increase the lifetime of the system, no
matter what the state of the other patches is.

Frustration and semi-checkerboards

In condensed matter physics many systems attain their
minimal energy when their spatial arrangement is
checkerboard-like. A classic example of this is a lattice
occupied by small magnets for which in the low energy
state every “up” spin is surrounded by “down” spins
(antiferromagnetism). The low-energy state may take
this checkerboard configuration, of course, only on a
bipartite lattice. The behavior of these systems on non-
bipartite arrays, like the two dimensional triangular
lattice, is much more complicated.

The term used to describe the problem of opti-
mal arrangement on a non-bipartite lattice is frustra-
tion (Thouless et al. 1977). The simplest example is a
triangle: one cannot have a perfect up-down-up-down
arrangement on a triangle: one link, at least, must be
frustrated. In this section we show the results of our
simulations when carried out with a frustrated arrange-
ment of spatial patches. Two generic examples have
been studied: the triangle and the pyramid (a four-
patch system of fully-connected sites).

Both perfectly ordered bipartite lattices and fully
frustrated systems are rare in nature. They are consid-
ered here because they appear often in experimental se-
tups, and because they present two extreme cases which
allow the classification of realistic patterns according to
their proximity to one of these extremes.

The dynamics of the deterministic three-patch sys-
tem of coupled Ricker maps is depicted in Fig. 5a. The
graph shows three different behaviors: in the case of
low migration the system behaves as a collection of
independent chaotic patches (blue region), at high mi-
gration the whole system synchronizes (red region) and
at an intermediate migration rate (green) the system
presents a semi-checkerboard: two patches synchronize
and oscillate in phase with the other patch. This fea-
ture is demonstrated in Fig. 5d, showing the correla-
tion coefficient between different patches. In the semi-
checkerboard region the individual-based simulation
presented in Fig. 5b shows the maximal life-time. Panel
(c) presents the Lyapunov exponent λ of the orbits:
while the chaotic regions are characterized by a positive
exponent indicating that the trajectories are unstable,
for the periodic orbits λ is negative. However, although
there are more attractive (more negative λ) regions,
the lifetime peaks [panel (b)] when the decoherence is
maximal.
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Fig. 5 A three-patch system of coupled Ricker maps. a The
orbit diagram for the deterministic system with r = 2.833. The
intermediate migration (green) regime is characterized by a frus-
trated spatial configuration; two patches are locked together and
their oscillations are anticorrelated with the third. Initial condi-
tions break the symmetry among patches. The average time-to-
extinction of the individual-based dynamics of the same system is
plotted in b. The highest lifetime correspond to the up-down re-
gion of the deterministic map, for N0 = 30. c shows the Lyapunov
exponent λ of the orbit: while the chaotic regions are character-

ized by a positive exponent indicating that the trajectories are
unstable, for the periodic orbits λ is negative. Yet, although there
are more attractive (more negative λ) regions, the lifetime peaks
when the decoherence is maximal. This is emphasized in panel
d, where the correlation coefficient between patches is plotted.
Here the green points correspond to the correlations between the
two synchronized patches, while the red shows the correlations
between the average of the two synchronized patches, ¯n1, n2, and
the third patch

The semi-checkerboard pattern also characterizes
the maximum sustainability point of the pyramid
(Fig. 6), a fully connected four patch system. In this
case the system spontaneously divides itself into two
synchronized parts presenting up-down dynamics in
intermediate diffusion.

Another issue addressed in Fig. 6 is the effect of con-
nectivity. The main part of Fig. 6b shows the lifetime of
a four-patch system in a fully connected configuration
(any immigrant chooses one out of three patches with
the same probability) and the inset shows the lifetime
of a four patch system on a ring, i.e., when the passage
of individuals is to neighboring patches only. In both
cases ν determines the chance of migration per indi-
vidual, which is independent of the connectivity of the

system. The lifetime peak appears to be at a very similar
migration rate, but its height is smaller (by a factor
of 10) for the fully connected system, i.e., an increase
in the connectivity decreases the average lifetime.

Environmental noise

In the previous sections only one type of noise, demo-
graphic stochasticity, was considered. The importance
of including this type of noise is that it allows for
a natural definition of the extinction as the inactive
(“absorbing”) state of zero population, and that it ex-
ists even in controlled experiments. It is well known,
however, that other types of noise affect realistic eco-
communities. In (Ben-Zion et al. 2010b) we examined
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Fig. 6 A four-patch system of fully-connected coupled Ricker
maps. a The orbit diagram for the deterministic system with
r = 2.833. In the low-migration (blue) region the patches are
independent, while in the high migration (red) region they are
synchronized. The intermediate migration (green) regime is char-
acterized by two coupled synchronized patches that behave with
UD dynamics. b shows the average time-to-extinction of the
individual-based dynamics of the same system. The highest life-
time corresponds to the up-down region of the deterministic map,
for N0 = 20. The inset shows the same for a four-patch system on
a ring, i.e., with decreased connectivity (the same topology as the
one used in Fig. 1). While the peak appears at a similar migration
rate, its height is an order of magnitude higher

the impact of other types of noise and the robustness
of the checkerboard strategy. For the sake of complete-
ness we review the main results here. We also present
another numerical experiment that demonstrates the
effect of synchronous exogenous factors [the Moran
effect Moran (1953)]

In (Ben-Zion et al. 2010b) we considered a two-patch
Ricker system, and following (Ranta et al. 2006; Ranta

and Kaitala 2006) we simulated this map, and added
stochasticity ξ

xt+1
1 = ξ1

[
(1 − ν)xt

1e(r(1−xt
1/N0)) + νxt

2e(r(1−xt
2/N0))

]

xt+1
2 = ξ2

[
(1 − ν)xt

2e(r(1−xt
2/N0)) + νxt

1e(r(1−xt
1/N0))

]
. (3)

The noise terms ξ are uniformly distributed random
numbers in the range between 1 − w and 1 + w , where
w = 0.2.

Equation 3 describe a system with no demographic
stochasticity, where the size of the population may take
noninteger values. At the end of each time step, Eq. 3
yield two numbers, x1 and x2, which are the expected
average population on the corresponding islands. To
make this model individual-based the following proce-
dure has been adopted: at each time step two integers,
n1 and n2, were drawn at random from a Poissonian
distribution with an average of x1 and x2; these integers
were then fed back as the population size for the next
iteration of Eq. 3.

We simulated the system and measured the persis-
tence time as a function of the the migration rate for
two different noise terms: perfectly correlated stochas-
ticity and stochasticity with no correlation at all (Ranta
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Fig. 7 The average persistence time of a two-patch system with
uncorrrelated (left) and correlated (right) dichotomous environ-
mental noise. The intra-patch dynamics follows the Ricker map
with r = 2.83 and N0 is chosen randomly as either 30 or 36. Panels
a and c show the average time to extinction and the correlation
coefficient, correspondingly, for simulations where the value of
N0 was picked at random for each of the patches independently.
Panels b and d show the same for correlated environmental noise
where the same N0 is chosen at each generation for both patches.
The lifetime of the Moran system is shorter and the peak is
shifted to smaller migration rates, but both peaks appear where
the decoherence is maximal
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et al. 2006; Ripa and Lundberg 1996). The results,
presented in (Ben-Zion et al. 2010b), show that in
both cases the sustainability peaks at the same ν for
which the maximum anti-correlation appears for the
case of pure demographic noise. The overall life-time
is smaller in the presence of environmental noise as
expected.

In all of the examples presented so far, spatial
synchrony was a result of dispersal. However, pos-
itive correlation may arise as a result of congruent
dependence of population size on exogenous random
factors (Liebhold et al. 2004; Moran 1953; Sutcliffe
et al. 1997). What happens to the sustainability peak in
that case?

In Fig. 7, the lifetime of a two-patch system with di-
chotomous noise is presented together with the correla-
tion function. If noise is uncorrelated between patches
the persistence peaks (panel a) when the coherence is
minimal (panel c). When the environmental noise is
correlated (left panels b and d) the point of maximum
decoherence moves to lower migration rates, and so
does the maximum lifetime.

Discussion and conclusions

Theoretical studies emphasize the contradictory
influences of dispersal on the sustainability of animal
colonies. On the one hand, systems with a low rate of
dispersals cannot survive, but on the other hand large
migration leads to coherence and exposes the system
to the danger of regional extinction. This observation
is supported by recent experiments. In (Dey and
Joshi 2006), for example, laboratory metapopulations
of Drosophila under different migration rates were
replicated. The experiment presented maximal sustain-
ability in an intermediate dispersal rate; the optimal
rate appears when the system presents anti-correlation
among neighboring subpopulations. The achievement
of ecological sustainability in intermediate diffusion
has been demonstrated in other recent experiments on
predator-prey (Holyoak and Lawler 1996; Ellner et al.
2001; Kneitel and Miller 2003; Kerr et al. 2002), host-
parasite (Kerr et al. 2006) and single species (Molofsky
and Ferdy 2005) colonies.

In our previous study (Ben-Zion et al. 2010b) we
found that the optimal strategy is an intermediate level
of dispersal that manifests itself in spatial checkerboard
patterns. This structure facilitates movements between
colonies that are in opposite states at a given time.
In this study we have examined the performance of
this strategy when some realistic aspects are added
to the model and when the spatial structure does not

allow for a checkerboard pattern. We considered the
stability in the presence of migration cost, and showed
that as the lifetime peak moves to the right (higher
migration), so does the maximum anti-correlation state.
Correlated environmental noise shifts the peak to a
lower ν, and again the maximum decoherence state
moves accordingly. The same holds true for different
topologies. It turns out that in all cases, maximum
sustainability is achieved where the anti-correlations
between neighboring subpopulations reach the highest
value.

The checkerboard strategy, as emphasized above,
is not evolutionary stable, and is not expected to ap-
pear spontaneously in nature. (It is interesting to note,
though, that the results of Matter and Roland (2010)
may be interpreted as the destruction of an existing
checkerboard pattern due to local extinction.) The re-
sult presented here may be useful for the interpretation
and planning of experiments with spatially structured
populations (from single species to microcosms) and
for the management of conservation efforts, especially
those that involve manipulation of connectivity and
migration rates. The main recommendation is very
simple: in the interesting parameter regime, i.e., when
an isolated population is occasionally extinction prone,
the persistence of the system depends, almost solely,
on the level of coherence among patches. The con-
servation strategy has to rely on this observation, and
any intervention should be aimed at making the anti-
correlations as high as possible.

In most practical cases, an accurate retrieval of the
“laws of motion” that govern the local population dy-
namics is almost impossible. The strong effects of noise
and migration make this task hard even in the simplest
experimental situations [see, for example, the level of
noise presented in the recurrence plots used in Molof-
sky and Ferdy (2005)], not to mention in the results
obtained from field studies. One would like to have a
model-independent tool that allows the prediction of
the outcome of a manipulation. This work seems to
suggest a generic rule of thumb: try to maximize the
spatial anti-coherence. This strategy works for all of
the cases we have studied here, which together provide
a fairly comprehensive survey of small systems with
similar-sized patches.

When pairs of patches were already anti-correlated,
we have not yet found a reliable way to decide if
the system is to the left of the peak or to its right
(will the anticorrelation/lifetime increase or decrease
when the migration rate becomes larger/smaller), but
in the meantime, a trial and error strategy can be used.
However, when two nearby local communities show
synchronous population dynamics [i.e., when the zero-
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lag correlation between population sizes is positive, like
in the microcosm experiment of (Holyoak and Lawler
1996)] a decrease in the connectivity/migration between
them is always beneficial for the sustainability of the
system, no matter what the underlying dynamics are.

Finally, let us comment about one of the techniques
developed by ecologists in order to predict the danger
of metapopulation extinction, which is based on the
stochastic patch occupancy models (SPOMs) (Moila-
nen 1999; Etienne et al. 2004; Hanski 1994a, b, 1991;
Moilanen 2004). These models treat spatial patches as
a two-state system, where each habitat patch is either
occupied or empty. The underlying assumption is that
the timescale in which the population reaches its local
carrying capacity is relatively small. Neglecting the de-
tails of the intra-patch dynamics, the theory focuses on
extinction and recolonization events. Most importantly,
decoherence among local habitats is implicitly assumed
in this model since it postulates that the chance of local
extinction decreases monotonically with the connectiv-
ity. The simulations presented here show that, by as-
suming decoherence, the analysis suggested by SPOM
may miss the most important stabilizing factor, at least
when the local abundance is occasionally extinction
prone. In a different publication, we intend to explore
the parameter regime where SPOM is applicable, and
to explain how to use the presence/absence data in
order to check if the system is indeed within this pa-
rameter regime.
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