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Abstract 10 

 11 

Taylor's law, one of the most widely accepted generalizations in ecology, states that the variance 12 

of a population abundance time series scales as a power-law of its mean.  Here we re-examine 13 

this law and the empirical evidence presented in support of it.  Specifically we show that the 14 

exponent generally depends on the length of the time series and its value reflects the combined 15 

effect of many underlying mechanisms. Moreover, sampling errors alone, when presented on a 16 

double logarithmic scale, are sufficient to produce an apparent power-law. This raises questions 17 

regarding the usefulness of Taylor's law for understanding ecological processes. As an 18 

alternative approach, we focus on short-term fluctuations and derive a generic null model for the 19 

variance-mean ratio in population time-series from a demographic model that incorporates the 20 
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combined effects of demographic and environmental stochasticity.  After comparing the 21 

predictions of the proposed null model with the fluctuations observed in empirical datasets, we 22 

suggest an alternative expression for fluctuation scaling in population time series. Analyzing 23 

population fluctuations as we have proposed here may provide new applied (e.g., estimation of 24 

species persistence times) and theoretical (e.g., the neutral theory of biodiversity) insights that 25 

can be derived from more generally available short-term monitoring data.  26 

 27 

Key words: birds; demographic noise; environmental stochasticity; population abundance 28 

variance; sampling error; Taylor’s law; temporal variance; variance-mean relations; trees. 29 

  30 
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Introduction 31 

 32 

One of the major challenges in the study of ecological systems, and complex systems in 33 

general, is to characterize and to explain patterns of temporal variability and stability. 34 

Understanding such patterns is important for both basic ecology, where the degrees of population 35 

and community stability are debated, and applied conservation where temporal fluctuations 36 

affect the likelihood of species persistence across human-managed landscapes. A typical scenario 37 

where this problem arises is the analysis of timeseries showing the abundance of a given species 38 

at a particular location. Such a time series is usually quite noisy, and one would like to utilize 39 

this noisiness in order to characterize the stability properties of the population.  40 

In this context, many studies have reported that the variance (S) of population size grows 41 

as a simple power of the mean (N): 42 

 1 2,    zS c N z  (1) 

where c and z are constants.  This pattern, known as Taylor's law (Taylor 1961, Taylor and 43 

Woiwod 1980, 1982), is considered one of a few general quantitative laws in ecology (Keitt and 44 

Stanley 1998, Keitt et al. 2002, Kilpatrick and Ives 2003) and other complex systems (de 45 

Menezes and Barabasi 2004, Eisler et al. 2008).  In fact, this law is used in two distinct contexts 46 

(Kendal 2004): to assess spatial clustering and patchiness, and to characterize time series (Taylor 47 

and Woiwod 1980, 1982, Kilpatrick and Ives 2003).  Here we consider only Taylor's law for 48 

time series, which is recognized as a general scaling relation between a population’s mean 49 

abundance and its variance over time(Anderson et al. 1982). 50 

 51 

  52 
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Observed variations in population abundance are expected to be caused by a few 53 

underlying mechanisms. The simplest of these is sampling errors: even if the actual size of the 54 

population is fixed, the survey may sample different individuals leading to variation in counts 55 

across repeated surveys.  The stochastic nature of the birth-death process provides us with 56 

another source of variation, demographic noise, where individuals vary in their reproductive 57 

success in an uncorrelated manner.  If, for example, every individual produces, on average, one 58 

offspring and then dies, the abundance  will fluctuate without an overall trend, and   the variation 59 

per generation is proportional to the square root of the population size (Van Kampen 1981). 60 

Environmental stochasticity, on the other hand,  affect all the individuals in the population, 61 

causing periods where the  birth/death rate, when averaged over the   population, grows or 62 

declines, hence the variation scales linearly with population size (Lande et al. 2003)  It has been 63 

shown that if dynamics are governed solely by demographic noise, then the exponent  z in Eq. 64 

(1) approaches one.  Conversely, if environmental stochasticity is the main driver of the change, 65 

then z=2 (Ballantyne and Kerkhoff 2007).  Finally, stabilizing forces like a finite carrying 66 

capacity may balance the effects of stochasticity and limit the range of possible population sizes.  67 

   68 

The aim of this paper is to re-evaluate the validity and usefulness of Taylor's law (as expressed in 69 

Eq. [1]), and to suggest an alternative framework for the analysis of short-term fluctuations in 70 

empirical datasets. Applying our method to relatively "clean" (error free) datasets, we can 71 

suggest a new empirical law. One of the applied benefits of this approach is that it can be 72 

implemented with short-term data which is more widely available, across many more species, 73 

than long-term data.  74 

 75 
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In particular, regarding Taylor's law (Eq.  [1]) we will point out the following obstacles 76 

 77 

1. The variance-mean ratio depends strongly on the length of the time series.  78 

2. The apparent agreement of empirical datasets with Eq. (1) may be an artifact of sampling 79 

errors and the (mis)use of the double logarithmic scale.   80 

3. Even in the best-case scenario, when the variance-mean ratio has converged to its long-81 

term value, it reflects a nontrivial interplay between the noise and the stabilizing 82 

mechanisms, rendering it difficult to interpret.  83 

 84 

Given the difficulties associated with evaluating and interpreting Taylor's power law, we suggest 85 

separating the question of population variability and stability into two components: long-term 86 

behavior, governed by stabilizing mechanisms (or lack thereof, (Pimm and Redfearn 1988, 87 

Hanski 1990), and short-term fluctuations and their scaling with population size. The latter is the 88 

focus of our analysis in this paper. 89 

 90 

The question of short-term fluctuation scaling, i.e., how are survey to survey changes in 91 

population size dependent on population size itself, addresses a fundamental aspect of the 92 

behavior of the system.  Without a good assessment of these fluctuations it is very difficult to 93 

interpret the long-term properties of the system and to extract information about regulating 94 

forces (Freckleton et al. 2006). Moreover, population viability analyses usually depend on the 95 

balance between stabilizing mechanisms and stochasticity, and the latter should be well 96 

characterized if we are to have confidence in estimated persistence probabilities.  Finally, the 97 

neutral theory of community dynamics (Hubbell 2001), a central (although hotly debated) 98 
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paradigm in contemporary ecology, assumes dynamics are driven by pure demographic 99 

stochasticity, an assumption that may be examined within our framework.  100 

In what follows, we expand on the limitations associated with Taylor's law, as 101 

enumerated above.  As an alternative, we present and solve a null model for populations under 102 

both demographic and environmental stochasticity, and explain how to present the results in a 103 

way that enables an informative comparison between the model and the data.  Comparing the 104 

results obtained using high-quality datasets and this null model, we can rule out a simple 105 

combination of demographic and environmental noise, and suggest an alternative non-trivial 106 

expression for fluctuation scaling.  Finally, we will discuss the implications of our results, 107 

including its relevance to the debate surrounding the neutral theory of biodiversity.   108 

Short versus long-term dynamics 109 

 110 

To consider the relation between timeseries length and the variance-mean ratio, let us 111 

begin with a qualitative analysis.  In general, when a system is affected by noise and stabilizing 112 

mechanisms, the noise is dominant over short time scales, and the relative importance of 113 

stabilizing forces grows in time, eventually dominating the dynamics over long time horizons.  114 

As an example, let us consider a local population fluctuating around an average size N.  For 115 

simplicity, we represent the stabilizing forces as reflecting boundaries at N+p and N-p as in 116 

Stong’s "density vague" dynamics (Strong 1986); see the illustration in Fig. 1. That is to say, the 117 

stochasticity driven fluctuations are not restricted as long as the population size remains between 118 

the boundaries. We discuss several alternative versions of this model in supplement A.  In 119 

particular, we consider the case of a population driven by pure demographic noise, as well as one 120 

driven by both demographic and environmental noise. Another parameter one can modify is the 121 
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band width (p) of the stabilizing force. The width may be taken to be proportional to N, and 122 

supplement A presents cases where Np ~  and ~p N  are simulated.   123 

Both demographic and environmental noise cause the population to perform a random 124 

walk between the two boundaries.  Over short time scales, before the typical trajectory hits one 125 

of the boundaries, the exponent z reflects pure stochastic motion, with z=1 for demographic and 126 

z=2 for environmental noise (Van Kampen 1981, Lande et al. 2003) .  Over longer time series, 127 

the typical trajectory uniformly covers the allowed band of abundances, and the variance scales 128 

with p
2
.  Accordingly, the variance-mean ratio is determined by the relationship between N and 129 

p. If p is proportional to N, then z=2; and if Np ~ , then z=1 – both results being independent 130 

of the underlying stochastic process.  Hence, if the noise is purely demographic and Np ~  the 131 

exponent z approaches 1 over short time intervals and will increase to 2 over long time intervals.  132 

Conversely, for environmental stochasticity and Np ~ , estimates of z will start at 2 in the 133 

short term and relax to z=1 in the long term.  See supplement A for a summary and a few 134 

numerical demonstrations.  135 

All of the above is true for the case of sharp, perfectly reflecting boundaries.  If we relax 136 

this constraint and let the strength of the stabilizing force behave more generally (e.g., 137 

proportional to the distance from N as in logistic or Gompertz population growth models), then 138 

interpretations of z become more complicated.  In this case the nature and strength of the noise 139 

affects the width of the allowed band.  Accordingly, when the empirical Taylor's exponent z is 140 

estimated for timeseries of arbitrary length (as is usually the case), its magnitude reflects a 141 

balance between stochastic fluctuations and the restoring forces in a nontrivial way.  142 

This poses a serious problem for the interpretation of empirical variance-mean relations. 143 

Based on the above considerations, we generally expect the scaling to depend on the length of 144 
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the timeseries in a manner that depends on the (unknown) properties of the stabilizing force, 145 

rendering unequivocal understanding of underlying mechanisms difficult. Furthermore, these 146 

difficulties arise even when the empirical measurements of population size are exact and free of 147 

errors. In the next section we point out another problem:  sampling errors alone may produce 148 

almost any exponent. 149 

Taylor's power law as an artifact 150 

 151 

Sampling noise associated with surveys of population abundance over time poses an 152 

often unrecognized obstacle to the assessment of Taylor's law. McArdle (Mcardle et al. 1990) 153 

has already noted that sampling causes a bias in the estimate of population variability. Here we 154 

stress another difficulty, arising  from the fact that population surveys are subject to two types of 155 

sampling errors. When superimposed on each other, these errors may yield any value of z in the 156 

appropriate range.  157 

The first type of sampling noise is binomial:  if there is a fixed chance to sample each 158 

individual animal or plant, two surveys of a population of size n will yield results that typically 159 

differ by n , hence mimicking the z=1 behavior associated with real demographic fluctuations.  160 

A second type of sampling noise is proportional: the observer may miss a whole cluster (flock, 161 

patch) leading to an error that scales with population size n (thus z=2) that could be mistakenly 162 

interpreted as evidence for environmental noise.  The lognormal sampling errors reported in the 163 

literature (Dennis et al. 2006, Knape et al. 2011, Knape and de Valpine 2012) also belong to this 164 

second class of proportional inaccuracies.   165 

Accordingly, even if the actual population is fixed, sampling errors of both types can 166 

yield any ratio between z=1 (only errors of the first kind) and z=2 (mainly errors of the second 167 
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kind).  In supplement B we give examples of these artifacts.  An analogous problem with the 168 

estimation of the exponent in the spatial version of Taylor's law was already pointed out by 169 

(Titmus 1983).   170 

Given the ubiquity of sampling errors, we argue that the evidence provided thus far in the 171 

literature supporting the power-law (Eq. 1) is inconclusive. A reliable analysis of fluctuation 172 

scaling must start with highly accurate data, for which the sampling errors are negligible, or with 173 

data that were corrected for the potential effects of sampling errors.  174 

A related issue (see supplement B), is the problematic use of the double-logarithmic 175 

scale.  The use of these plots seems to be a natural choice when dealing with power-laws like 176 

(Eq. 1), since a power law appears as a straight line, and since the log scale allows one to present 177 

data that spans many orders of magnitude in the same plot.  However, the compression involved 178 

in the logarithmic transformation leads to a typical misrepresentation of the results (Avnir et al. 179 

1998): a dataset that shows widely scattered points on an arithmetic scale, appears almost as a 180 

straight line on a double logarithmic scale.   181 

All in all, we claim that the empirical support for Taylor's power law is questionable, and 182 

even if the law is valid, the z exponent carries little information about the underlying forces that 183 

govern population dynamics.  We wish to propose an alternative methodology for the analysis of 184 

population monitoring data.  Long-term monitoring data are expensive and therefore not 185 

generally available for many species.  To address this data limitation we focus on presenting an 186 

approach that can identify underlying forces contributing to observed population dynamics with 187 

short-term data.  In those cases where data on long- term dynamics are available, one may 188 

implement the variance-time lag technique as presented in (Pimm and Redfearn 1988, Hanski 189 

1990, Keitt and Stanley 1998) 190 
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Short-term fluctuation scaling – a null model 191 

 192 

Let us present a generic and simple null model for population fluctuations that are caused 193 

by any combination of demographic and environmental stochasticity.  The model is solvable, and 194 

designed to produce predictions that can be easily tested using empirical data. The outcome of 195 

the model is a prediction about the ratio between fluctuation strength and abundance; this 196 

provides many technical benefits, as will be discussed towards the end of this section.  197 

A basic feature of the model is the focus on within-generation fluctuations in abundance, 198 

i.e., on timeseries where the interval between consecutive observations is smaller than the 199 

generation time. Such time series are typical for many types of organisms (e.g., time series of 200 

tropical trees (Condit 1995), and annual breeding bird surveys  (Sauer et al. 2011). Under these 201 

conditions one can safely assume that an offspring born during the survey interval did not  itself 202 

give birth within this period, i.e., that the contribution of "grandchildren" to the variations 203 

between survey periods is negligible. Moreover, on such short timescales one may hope that the 204 

effect of stochasticity is more pronounced than the effect of stabilizing forces.   205 

We will present the model using trees as the example taxon, but the concepts are relevant 206 

also to surveys of other kinds of organisms, with appropriate modifications of the generation 207 

time and survey to survey intervals.  The model has three parameters:  is related to the ratio 208 

between the survey interval and the generation time, is the strength of demographic 209 

stochasticity, and a random variable  is taken from a distribution of variance   that is 210 

proportional to the environmental noise.  Figure 2 illustrates the model dynamics.   211 

 212 
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Let us assume that within a single interval (say, five years), the chance of a tree to be 213 

"inactive" is . An inactive tree just stays there, does not reproduce and does not die.  1214 

when the time interval between two consecutive surveys approaches zero, and  decreases as the 215 

time interval increases, reaching  zero around the generation time.  This parameter links the 216 

generation time to the time interval between surveys. If the tree is "active" (with probability 1-217 

, it either dies with probability (1- ) , or produces a random number of offspring, taken from a 218 

Poisson distribution with mean   1 .  219 

For =0 (hence =0), the average size of the population is fixed over time.  Only a 220 

fraction  1-of the individuals are reproducing, but each of them produces 1/  offspring.  221 

Therefore, in this model  controls the strength of demographic stochasticity. For example, if 222 

=0.2 and  the initial population size is 100, half of the individuals stay inactive, 40 die 223 

and the remaining 10 produce 5 offspring  and die (or produce 4 offspring and stay alive), so the 224 

overall population is kept fixed.  225 

 226 

  If then one observes "standard" (Poissonian) demographic noise.  If <<1, only a 227 

few active trees reproduce, each one of them producing many offspring. For such a "Genghis 228 

Khan" scenario the demographic noise is huge but still z=1 in Eq. (1) (only the coefficient c  in 229 

Eq. 1  is larger). Finally, the value of  reflects the strength of environmental noise. In the 230 

simplest case one may pickat random for every species between any two surveys, from some 231 

distribution with zero mean.  232 

This model is solvable (see supplement C, and supplement F2 for the software used to 233 

verify the results). In particular, it is useful to look at the quantity 234 
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where 0n  is the size of the population at t=0 and tn  is the abundance at time t. Y is the size of the 235 

population variation, normalized by the square root of the population size, i.e., by the scale of the 236 

variation if the stochasticity is purely demographic.  Therefore, for populations that are subject to 237 

purely demographic noise, Var(Y) is independent of the population size. Accordingly, when 238 

calculating the variance  of Y using many pairs of datapoints with the same n0, it  is independent 239 

of n0. Since, for large populations, one can rarely find multiple measurement with the same n0, 240 

we calculate Var(Y)  over bins of population size, denoting the average in every bin as m.  If 241 

environmental noise is dominant, 0nnt  scales with 0n  and Var(Y) grows linearly with m.  For 242 

populations satisfying the dynamics, we show in supplement C that Var(Y) is the sum of 243 

two terms: an m-independent constant and a linear term: 244 
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Here ( ) Var  reflects the strength of the environmental noise.  When 0   (no 245 

environmental stochasticity) Var(Y) is independent of the mean m as expected.  Even if 0  , 246 

the effect of demographic noise appears in (3) only in the intercept, and the dependence of 247 

Var(Y) on m reflects only the environmental noise.  Therefore, plotting Var(Y) versus m should 248 

give us a horizontal straight line if the stochasticity is purely demographic (even if it is very 249 

strong,<<1). Any form of m-dependence indicates that the noise is not purely demographic, 250 

and in particular a linear relation between Var(Y) and m suggests environmental stochasticity.   251 

For a comparison with empirical data, the representation of Var(Y) against m possesses 252 

other advantages. It avoids the use of a double-logarithmic scale that obscures the details of the 253 
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plot, clearly separates the demographic component from other types of noise and may be used to 254 

estimate the strength of environmental stochasticity by the slope of the curve. Moreover, it 255 

allows for identification of other types of stochasticity that are neither demographic nor 256 

environmental, a feature that turns out to be quite important.    257 

Accordingly, we consider the Var(Y)-m plot the most appropriate tool to identify the 258 

nature of short-time fluctuations. 259 

 260 

 261 

Empirical analysis 262 

 263 

We applied our approach to two datasets. One is the result of consecutive large-scale 264 

censuses of trees in different tropical forests, provided by the Center of Tropical Forest Science 265 

(CTFS) (Condit 1995)  the other is the timeseries obtained from the North American Breeding 266 

Bird Survey (NABBS) (Sauer et al. 2011).  The tree censuses are carried out every five years and 267 

are nearly free of sampling noise. The BBS data are very noisy, but we can filter out 268 

measurement noise using the variance through time plots as explained in supplement D, and the 269 

software used is presented in supplement F3.    270 

The Var(Y)-m diagrams are presented in Figure 3 (for three tropical forests: Barro 271 

Colorado Island [BCI], Pasoh and Lambir) and in Figure 4 (for fluctuations in bird communities, 272 

extracted from the NABBS data).  In both figures the value of Var(Y) is clearly growing with the 273 

mean, so the noise must have a non-demographic component. 274 

Does Eq. (3) fit the empirical findings? It seems that the growth of Var(Y) with m in 275 

Error! Reference source not found.3 and Figure 4 is sublinear, but it is hard to determine its precise 276 

functional form. This sublinearity may reflect an internal structure within the population 277 



04Kalyuzhny et al. –  

 

(Ballantyne and Kerkhoff 2007, Violle et al. 2012) as would be the case if individuals of a 278 

population are not all exposed to the same environmental stressor (), but are divided into groups 279 

that are exposed to independent random .  Alternatively, sublinearity may result from 280 

modifications of the scale of  fluctuations  resulting from interspecific competition (Kilpatrick 281 

and Ives 2003, Mellin et al. 2010). 282 

While it is hard to extract an exact functional form from Figures 3 and 4, and one may 283 

wonder if there is a simple and general law that relates the Var(Y) to the mean, we can still 284 

propose a possible relation.  First, as demographic noise appears in any population dynamics 285 

system, any suggested law must include a term (e.g., the constant term for Var[Y] plots) that 286 

reflects it. Such a term corresponds to the pronounced intercept in Figure 3 (see inset). The 287 

superposition of environmental stochasticity, competition, and other possible forces yields the m-288 

dependence in Var(Y) plots.  In the empirical systems this term grows more slowly than expected 289 

for pure environmental noise.  Accordingly, we believe that if there is a simple law connecting 290 

fluctuations to the mean, it perhaps takes the form 291 

( 1( ) 1 2.   zVar Y a bm z  (4) 

In supplement E (see supplementary Fig. E2), we present the fit of the BCI dataset to (Eq. 292 

4), and it shows good agreement with intercept a=1 and 3/ 2z . The other datasets, although 293 

cleaned from sampling errors, are still too noisy to allow for a reliable fit. Indeed, even the BCI 294 

fit should be taken with a grain of salt, as different binning methods may yield different 295 

exponents. Therefore, we do not argue that the empirical results presented here provide 296 

unequivocal support for Eq. (4), but that this expression cannot be ruled out, unlike Eq. (1) or Eq. 297 

(3).  298 
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Discussion  299 

 300 

The growth in fluctuation amplitude with the mean of a timeseries is a well-established  301 

fact (Eisler et al. 2008). Quantifying this ratio and providing a mathematical expression that 302 

describes the variance-mean relationship is much harder. Based on his empirical data, Taylor 303 

(Taylor and Woiwod 1980) suggested that the ratio is a simple power law, Eq. 1.  Given the 304 

analysis presented above, we feel that this proposal is problematic from a few perspectives:  305 

 306 

1. Because Taylor’s exponent z depends on many underlying parameters, 307 

from the length of the time series to the interplay between stabilizing and destabilizing 308 

forces, it is difficult to connect it directly to the mechanisms driving the system.  309 

 310 

2. Because demographic noise affects all ecological population, for every 311 

system with z>1 the fluctuation must have at least two sources: demographic and 312 

something else, where the extra noise is perhaps related to a superposition of 313 

environmental stochasticity and some kind of restoring force.  If the net result of these 314 

multiple mechanisms is a single power-law like Eq (1), then they must balance each other 315 

in a nontrivial and precise way.  Fine tuning of this type is extremely rare in nature, and 316 

to find it in complex systems like those considered here is very unlikely.  Adding the 317 

demographic term to the additional  mechanisms is a more plausible formulation as in Eq. 318 

4. 319 

 320 
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3. Another line of criticism has to do with the empirical Var-mean graphs. 321 

We have shown that the effect of sampling noise, when superimposed on the data 322 

compression associated with log-log plots, can lead to a misinterpretation of the simple 323 

power law even when the system has no dynamics at all (see supplement B, Fig. B1).   324 

Accordingly, we put forward two methodological suggestions. The first is either use 325 

high-quality data coming from full sampling of populations (like in the CTFS censuses) or to 326 

filter out the measurement errors like what was done here for the NABBS.  The second to focus 327 

on short-term analysis and to replace the plots of Var vs. mean on a double logarithmic scale by 328 

Var(Y)-mean diagrams using an arithmetic scale.  These diagrams allow for a direct comparison 329 

with the result of a simple null model (Eq. 3), and make a sharp distinction between the effect of 330 

demographic noise, which appears only in the intercept, and other effects that lead to the growth 331 

of Var(Y) with m.  332 

The two sets of empirical timeseries that we have used show a sublinear growth of Var(Y) 333 

with the average abundance, thus they may fit Eq.(4).  However, in both cases we do not have 334 

enough data points for any specific species; to implement our technique we had to adopt a 335 

macroecological approach (Keitt and Stanley 1998, Keitt et al. 2002), assuming that different 336 

species and different populations all share the same characteristic dynamics  337 

Our theoretical and empirical analyses have direct implications for the debate over 338 

Hubbell's neutral theory of biodiversity (NTB) (Hubbell 2001, Volkov et al. 2003).  The NTB 339 

assumes that all species in a community have the same fitness, and the dynamics is governed 340 

solely by demographic noise and (relatively rare) migration events.  Accordingly, the NTB (for a 341 

metacommunity, without spatial structure) has a very strong prediction about the fluctuation 342 

scaling: the variance of a timeseries must grow linearly with the mean, independent of species 343 
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identity, and the variance of Y is independent of m.  This property is depicted in Figure 5, where 344 

a simulation of Hubbell's zero-sum dynamics provides the timeseries for the analysis (see 345 

supplement F1 for the software we have used).  Figure 5 provides also the expected magnitude of 346 

the variance in this Y versus mean population plot due to the use of a finite number of relatively 347 

short time series. Substantial deviations from this pattern imply non-demographic processes, and 348 

rule out a purely demographic theory.  Although the results shown in Figure 5 were generated for 349 

some set of specific values assigned to the total population and migration/mutation rates, the 350 

pattern observed is general; in particular, the value of Var(Y) is independent of m and the 351 

fluctuations (confidence intervals) are smaller than one unit.  Clearly, this feature of a purely 352 

demographic process is inconsistent with the empirical results presented in Figure 3 and Figure 353 

4.  354 

The fact that the size of fluctuations is larger than the prediction of the NTB was already 355 

noted by several authors (Leigh 2007, Seri et al. 2012).  In particular, Feeley et. al. (2011) 356 

considered these large changes (which they call "directional changes") in the BCI forest as 357 

resulting from specific nonstationary dynamics (e.g., el Nino events, carbon fertilization), in 358 

either the short- or long-term.  359 

Another possible explanation to this puzzle was suggested recently in (Keil et al. 2010).  360 

These authors showed that a nontrivial variances-mean pattern may appear when a neutral 361 

dynamic is simulated on a set of local communities (archipelago model) connected by migration.   362 

We would like to suggest a third possibility within the neutral theory framework: that the 363 

directional changes are not the exception but rather the rule.  That is, the stochasticity affecting 364 

ecological communities is mainly environmental, or at least non-demographic (one can argue 365 

here about terminology, claiming that once the model allows for differential response to 366 
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exogenous factors it is not neutral anymore, but see  (Alonso et al. 2006). This implies that at any 367 

given moment different species have different fitnesses, but the relative fitness fluctuates in time 368 

and all species are equal on average, like in the  model considered above.  369 

If this is the case, the deviations from the prediction of the null model (Eq. 3) should be 370 

related to the effects of stabilizing mechanisms like restoring forces, or to the effect of 371 

competition considered in (Kilpatrick and Ives 2003). We hope to present a detailed analysis of 372 

this possibility in a subsequent publication.   373 

Finally, we would like to stress that any community model that admits a stable 374 

equilibrium state (including those based on generalized Lotka-Volterra equations and interaction 375 

matrices) and includes only demographic noise should be dismissed (given empirical datasets 376 

akin to those presented in Figures 3 and 4).  Fluctuations in such models will be smaller than in 377 

the (marginally stable) NTB and there is a restoring force that limits the amplitude of 378 

populations' variations, while the neutral dynamics is free of such stabilizing mechanisms.  379 

Community models that are able to fit the data presented here must include either substantial 380 

environmental noise or an intrinsic mechanism that generates strong population variations, such 381 

as chaotic dynamics (Huisman and Weissing 1999).  382 
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Figure Captions 496 

 497 

Figure 1.  An illustration showing a typical “density vague’ dynamics with N=500 (bright line, 498 

middle) and p=100 (dark lines) reflecting boundaries. A logarithmic scale is used for the x-axis 499 

(time), to emphasize the distinction between the free random walk in the short term and the 500 

effects of stabilizing mechanism at the long term. 501 

 502 

  503 

Figure 2.  The model: dictates the generation time,  sets the scale of demographic 504 

stochasticity, and reflects environmental noise.  The growth rate is fluctuating in time: at any 505 

given time the population is either decreasing or increasing deterministically.  The parameter (t) 506 

define the instantaneous growth rate of a population (or its relative fitness) and so characterizes 507 

the environmental stochasticity.  (t) is picked independently for every period of time and every 508 

species, from a distribution of zero mean and variance Δ.  Between censuses a tree may remain 509 

inactive with probability . If it is active, it dies with probability or produces (1+ offspring.   510 

 511 

 512 

Figure 3.  Var(Y)-m plot for tropical tree communities.  The value of Var(Y) was extracted for 513 

>1cm trees in three 50-ha CTFS plots: the Barro Colorado Island (BCI, 5 censuses, 320 species) 514 

Pasoh (3 censuses, 823 species) and Lambir (2 censuses, 1202 species).  Only censuses that are 5 515 

years apart were considered. Every two consecutive records of population size provide one value 516 

of Y for a specific n0. These values were collected into logarithmic bins, where all values of Y 517 

attained from n0 between 5
n
 and 5

n+1
 are collected into the (n+1)

th
 bin. Finally, we have 518 
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calculated Var(Y) for every bin, and plotted it against m, the average value of n0  in that bin.  The 519 

main panel depicts the results on an arithmetic scale, in which the small-m behavior is blurred 520 

because of the logarithmic binning; the inset shows the same results using a logarithmic scale for 521 

the x-axis, emphasizing the intercept associated with the constant a in Eq. (4).  The growth of 522 

Var(Y) with m is clear, indicating the effect of non-demographic stochastic events. Sublinearity 523 

is also self-evident. We have omitted the last point for the BCI forest (n0>10
4
) to keep the scale 524 

the same for all three cases.  The figure with this extra point is shown in the supplement E. 525 

 526 

 527 

Figure 4.  Normalized variance, Var(Y), against population size m, plotted for bird communities.  528 

The value of Y is extracted from the differences between consecutive years in the NABBS, after 529 

filtering the sampling noise as explained in  supplement D. The analysis technique is the same as 530 

in Fig. 2, but the binning is linear since in the birds dataset there are many more species with a 531 

smaller range of population sizes. 532 

 533 

 534 

Figure 5.  The variance-mean ratio in NTB metacommunity dynamics. Timeseries were gathered 535 

from a simulation of a zero sum dynamics for a community ("forest") of N=25,000 trees. At 536 

every timestep a tree is chosen at random to die, and the vacancy is filled with the descendent of 537 

another, randomly chosen tree. The vacancy is replaced by a new species, reflecting the effect of 538 

migration (or mutations in a metacommunity), with probability 510 .  A "generation" is 539 
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defined as the number of time-steps for which a tree has a chance 1/e to survive.  Species' 540 

populations were monitored every 1/10th generation (in the tropical forest the generation time is 541 

about 50 years), and the fluctuations monitored along the run to give the variance-mean ratio.  542 

The figure shows Var(Y) vs. m with logarithmic binning based on powers of 5 (this is the binning 543 

used for the real data in Figure 3).  The main panel uses logarithmic scaling of the x-axis to show 544 

clearly the small-m data, the inset is the same in real scale. Error bars stand for 95% (2) 545 

confidence intervals. 546 
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