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Abstract Models that explain the sustainability of an
exploiter–victim ecosystem admit, generally, a coexis-
tence state of both species in the well-mixed limit. Even
if this state is unstable, the extinction-prone system may
acquire stability on spatial domains where different
patches oscillate incoherently around the coexistence
state. New experiments, however, suggest that a spa-
tially segregated system may be stable even in the
absence of such a coexistence state. Here we revisit
the hawk–dove (case 3) model of Durrett and Levin,
which has been shown to support persistent population
for system of interacting particles. It turns out that this
model does not admit a (stable or unstable) coexis-
tence state on a single habitat. We analyze the peculiar
mechanism that leads to persistence in this case and
the role of demographic stochasticity with and without
self-interaction, using numerical simulations and exact
solutions in the infinite diffusion limit.

Keywords Sustainability · Population dynamics ·
Demographic stochasticity · Self-interaction ·
Victim–exploiter systems · Metapopulation

Introduction

The analysis of ecosystems and their stability is done
using a variety of modeling techniques. In their land-
mark paper, Durrett and Levin (DL; Durrett and Levin
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1994a) identify four approaches for the modeling. The
simplest approach neglects both spatial effects and the
discreteness of individuals (demographic stochasticity);
thus, the system is described by a set of ordinary
differential equations describing the deterministic time
evolution of a “density” which is associated with the
average number of individuals. The condition for per-
sistence is then associated with the existence of an at-
tractive manifold for the set of ODEs, like an attractive
fixed point, limit cycle, or a strange attractor.

If the spatial structure is taken into account but the
model is still deterministic (individuals are infinitesimal),
one arrives at a system of partial differential equa-
tions, which in most cases takes a reaction–diffusion–
advection form. Patch models, on the other hand, deal
with discrete individuals without spatial structure and
are subject to demographic stochasticity. Finally, an
interacting particle system (IPS) is a model including
both spatial effects and the stochasticity associated with
the discreteness of individuals.

When the non-spatial, deterministic system of ODEs
supports an attractive coexistence fixed point, the effect
of stochasticity that appears in IPSs is relatively well
understood. Demographic fluctuations may lead to ex-
tinction of the colony, but the chance of extinction
decreases exponentially with the number of individuals
at the steady state (see e.g., Kamenev and Meerson
2008; Kessler and Shnerb 2007) and references therein.
Typically the size of demographic fluctuations scales
like 1/

√
N, where N is the number of individuals at the

steady state. On spatial domains, demographic stochas-
ticity is controlled by the effective N, which depends on
both the carrying capacity of a site and the migration
rate (Kessler and Shnerb 2008). If the migration among
sites is weak, local extinctions may accumulate to yield
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global extinction even on an infinite domain, but at
higher dispersal rates, the system is stable (Hanski and
Gilpin 1997; Durrett and Levin 1994b; Snyder and Nisbet
2000; Barkham and Hance 1982). Migration, thus, in-
creases the persistence time of a system that admits
a stable equilibrium since it suppressed fluctuations
and reduces local competition. It may hurt sustain-
ability only in the presence of migration cost, either
direct (increased mortality during dispersal; Casagrandi
and Gatto 2002, 2006) or indirect (movement from
source to sink or, in general, into less favorable habitats;
Cantrell and Cosner 2003; Amarasekare 2004; Hastings
1983; Kessler and Sander 2009).

Some deterministic models that do not support a
coexistence fixed point still admit other attractive man-
ifolds, like a limit cycle or chaotic attractor (Wilson
and Abrams 2005; Abrams and Holt 2002; Armstrong
and McGehee 1980). The effect of demographic sto-
chasticity on the extinction rate in these cases is also
exponentially small, where now N should be taken as
the minimal number of agents along the determinis-
tic trajectory (Kessler and Shnerb 2010; McKane and
Newman 2005). This holds unless the stable manifold is
“excitable” and the system undergoes long excursions
under weak perturbations (Ben Zion et al. 2010).

In this paper, we focus on the other extreme, the case
where the deterministic non-spatial system is extinction
prone and its sustainability is acquired via the interplay
between spatial structure and stochasticity. This possi-
bility was demonstrated by Durrett and Levin in their
third, hawk–dove case. Here we intend to analyze this
model in detail and reveal the underlying mechanism
that leads to persistence. An interesting peculiarity of
the DL system is the absence of coexistence manifold.
This has to do with the results of some recent ex-
periments that study the effect of spatial structure on
sustainability in laboratory microcosms.

As a concrete example, let us focus on the work
of Holyoak and Lawler (1996). These authors used a
predator–prey pair (Didinium nasutum and Colpidium
cf. striatum). In an undivided habitat of 270-mL bottle,
one of the species always goes extinct, and this of course
is also true in a single 30-mL bottle. However, in a
microcosm made of an array of nine 30-mL bottles in-
terconnected by tubes, the system persisted for 130 days
(hundreds of generations), after which the experiment
ended.

Now let us imagine a similar setup where the rate
of migration via the interconnecting tubes is a free
parameter (say, one can change the tubes’ radius). If
the migration rate is much faster than any other rate
in the system, one effectively gets a single large bottle
and the system goes extinct. The same is true when the

migration rate is zero, where the microcosm becomes
a collection of nine isolated small bottles. Only for
intermediate migration rates is persistence possible.
The system is thus extinction prone in the well-mixed
limit (no attractive fixed point) and acquires stability
due to spatial structure. It is hard to imagine that
migration cost (e.g., death of individuals caused by their
movement, as in Casagrandi and Gatto (2002, 2006))
plays any role for these sub-millimeter protists. As the
migration rate increases, the deterministic non-spatial
approximation becomes better; thus, the system goes
extinct.

Similar results have been reported in many recent
experiments (Kerr et al. 2002, 2006; Dey and Joshi
2006; Ellner et al. 2001; Molofsky and Ferdy 2005) for
both single species, predator–prey, and host–parasitoid
dynamics. The results imply that in a well-mixed case,
i.e., when the migration rate is large enough to wipe out
the spatial structure, the population reaches extinction
within relatively short time scales. As migration rate
decreases, the population density starts to display space
(or space–time) modulations, and in this regime, its
lifetime peaked. Reducing the migration rate even fur-
ther, one encounters another extinction regime, where
the system effectively segregated to small patches and
the “rescue effect” (recolonization of vacant habitat
patches) is diminished. The general picture emerging
is that of a “sustainability window” at intermediate
levels of movement among patches, while the popu-
lation goes extinct rapidly if the migration rate is too
large (Earn et al. 2000) or too small (Mobilia et al.
2006), and the sustainability is peaked at intermediate
migration (Ben Zion et al. 2010).

To explain these features, several theoretical frame-
works have been suggested (Murdoch et al. 1992;
Murdoch and Oaten 1975; Hassell and May 1988;
Crowley 1981; Reeve 1990; Jansen and de Roos 2000;
Jansen and Sigmund 1998; Janssen 1981; Reichenbach
et al. 2007; Abta et al. 2007, 2008; Earn et al. 2000;
Earn and Levin 2006; Briggs and Hoopes 2004; Adler
1993; Keeling et al. 2000). All these models assume that
the ODEs describing the well-mixed system support
an unstable coexistence fixed point. As pointed out by
Nicholson (1933) and as suggested by almost all the
classical models, an inherent feature of this instability is
that population overshoot leads to growing oscillations
around the steady state. For example, in a predator–
prey system at the fixed point, the demographic losses
of the prey population due to predation are balanced
exactly by reproduction (birth events). Excess predator
density will lead to a decrease in the prey popula-
tion that induces, in turn, a depletion of the predator
population. When the predator gets back its steady
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state value—after a period of overpredation—the prey
density must be in a deficit, so the predator population
keep decreasing and so on.

In all the models mentioned above (except of DL),
the fact that a well-mixed population is extinction-
prone while a spatially segregated community is stable
is attributed to these oscillations around the coexis-
tence fixed point. The common feature of all models
is the appearance of some mechanism that supports
spatial segregation into subdomains that oscillate inco-
herently; this spatial desynchronization then stabilizes a
finite population state. In some cases, the deterministic
dynamics itself admits a pattern-forming instability in
some range of parameters (Reichenbach et al. 2007;
Jansen and de Roos 2000; Jansen and Sigmund 1998;
Janssen 1981). In other scenarios, the sustainability is
acquired due to the interplay between the deterministic
dynamic and the noise (e.g., demographic stochasticity;
Abta et al. 2008; Keeling et al. 2000).

Given this general picture, one may expect (at least
in experiments, where the effect of external noise is
quite weak) the following occurrences: In a well-mixed
system, population oscillations grow in time until ex-
tinction is reached, while with spatial segregation, the
overall occupancy of certain species reaches some finite
value and fluctuates only slightly around it. However,
examining the results of some new experiments (Kerr
et al. 2002, 2006; Holyoak and Lawler 1996), one real-
izes that the well-mixed system (e.g., the 270-mL bottle
mentioned above) flows almost directly to extinction,
without any salient oscillations. It seems, thus, that
the ODEs for the corresponding deterministic do not
support an unstable steady state with growing oscilla-
tions around it. Accordingly, at least in the context of
these systems, one cannot use the decoherence-based
mechanisms suggested above: All of them fail in the ab-
sence of deterministic oscillations close to an unstable
manifold.

In view of this puzzle, it is interesting to reexamine
the hawk–dove (case 3) model of DL (Durrett and
Levin 1994a). In contrast with other studies, this models
does not support any finite population state, either sta-
ble or unstable, in the well-mixed phase. Technically, all
the trajectories of a single-patch deterministic dynamics
end up at extinction and oscillations are prohibited;
there are no (stable or unstable) fixed points or limit
cycles of any kind. Sustainability, thus, is related to
the emergence of a new type of trajectories, due to
the combination of spatial structure and the effect of
stochasticity. In the following, this mechanism will be
analyzed and demonstrated via numerical simulations.
The Durrett–Levin system goes extinct without any
oscillations when the system admits no spatial structure

but may persist forever as a metapopulation, i.e., on a
subdivided habitat.

The model of Durrett and Levin is somewhat spe-
cial: It assumes no linear term for the growth rate of
both species, and the per-capita birth rate is singu-
lar at the origin. In most of the population dynam-
ics models (unlike evolutionary game theory models,
from which Durrett–Levin have been inspired), at least
one species admits a fixed, frequency independent per
capita growth rate. Another peculiarity of the model
is that it allows for self-interactions; without self in-
teractions, the results change substantially, as will be
discussed below.

In view of these unique properties of the model, it
should be stressed that we are not trying to relate it
directly to empirical results or to claim that it should
be considered as the only reasonable model in popu-
lation dynamics. The aim of this paper is to analyze
the stability mechanism of the hawk–dove case and to
explain how spatial sustainability may emerge, in prin-
ciple, without oscillation in the well-mixed limit. We
do suggest that similar mechanism may manifest itself
in other systems, including those admitting frequency-
independent growth rate term.

In the following section, we will survey the proper-
ties of the hawk–dove model in its deterministic limit,
showing that it is indeed extinction prone and that no
coexistence manifold exists, neither stable nor unstable.
In the third section, the spatial deterministic version
and the stochastic patch model dynamics are shown to
go extinct also, so the only scenario that will yield per-
sistent population is the IPS, as already argued by DL.
In “Neighborhood interactions and self-interactions”
section, the infinite diffusion limit is analyzed with and
without self-interaction, and finally, we conclude with a
short discussion.

The hawk–dove model and its deterministic dynamics

The model of Durrett and Levin incorporates elements
from the evolutionary game theory with “traditional”
victim–exploiter dynamics. It describes the interaction
between two species or two strategies, “hawks” and
“doves”. When two agents interact, the profits, or the
losses to an individual, are given by the payoff matrix:

H D
H a b
D c d

For example, when two hawks encounter each other,
any of them “wins” or “loses” a, while upon interaction
between hawk and dove, the hawk gets b and the dove
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acquires c. Specifically for DL case 3, the parameters
chosen and used hereon were a = −0.6, b = 0.9, c =
−0.9, and d = 0.7. This payoff matrix resembles the sit-
uation known as the prisoner’s dilemma: If the players
have to choose together a strategy, it will be better for
both to play dove. This state, however, is not a Nash
equilibrium (i.e., is not evolutionary stable) as in such
a case it is beneficial for a single player to switch to the
hawk strategy. The only ESS is for both players to play
hawk.

The model does not allow, though, for individuals to
use rational reasoning and to switch strategies. Instead,
the fitness, or the fecundity, of agents is determined by
their payoff. If the system is well mixed and contains H
hawks and D doves (H and D are integers), the total
payoff for, say, a hawk is proportional to its chance to
play against another hawk (this chance is the fraction
of the hawks in the population, H/(H + D)) multiplied
by the payoff a plus the corresponding term for the case
of encountering a dove, i.e.,

hawk payoff = aH/(H + D) + b D/(H + D)

dove payoff = cH/(H + D) + dD/(H + D). (1)

To get the deterministic dynamics of the system,
neglecting the effects of demographic stochasticity, one
replaces the integers H and D by the hawk density u
and the dove density v. The well-mixed deterministic
dynamics is given by the pair of nonlinear equations:

du
dt

= u
(

au
u + v

+ bv

u + v
− κ(u + v)

)

dv

dt
= v

(
cu

u + v
+ dv

u + v
− κ(u + v)

)
, (2)

where the κ term sets an upper bound for the size of the
population, i.e., its carrying capacity.

Unlike evolutionary games, where the population
size is kept fixed and a successful strategy dominates
the population, here the total number of agents changes
along time. While the basic interactions of this hawk–
dove case are very similar to those that appear in a
predator–prey model, Durrett and Levin have pointed
out that the dynamics described by Eq. 2 leads in-
evitability to the extinction of both species: The hawks
“consume” the doves then went extinct in the absence
of food. This feature is demonstrated in Fig. 1, where
the flow lines that correspond to the time evolution
(Eq. 2) are plotted in the u, v plane.

One may wonder if the phase portrait contains also
an unstable fixed point. The almost periodic trajectory
in the lower-left corner of Fig. 1 seems to encircle such
a point. In fact there is no coexistence fixed point. The
best way to realize that is to look at the u nullcline
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Fig. 1 Flowlines of the deterministic dynamics that correspond
to Eq. 2. The values of the parameters are a = −0.6, b = 0.9, c =
−0.9, and d = 0.7. Here κ = 0.08

of this model, shown in Fig. 2. Along this line, κ(u +
v)2 = au + bv; plugging this into the equation for v one
finds that, for these model parameters, v̇ is negative
along the u nullcline. The u and the v nullclines never
cross each other: All trajectories cross the v nullcline
rightward and the u nullcline downward; thus, all tra-
jectories eventually are “trapped” below the u-cline
and reach zero asymptotically along the line v = Auc/a,
where A is an arbitrary constant. The deterministic
dynamics is thus extinction prone with no oscillations.
The overzealous predators exploit their prey and then
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Fig. 2 Same as Fig. 1, where now the u and v nullclines are
plotted. The trajectories must cross the u nullcline vertically
downward and the v nullcline horizontally rightward; any trajec-
tory that is trapped below the u-cline flows to zero. The only fixed
point, where nullclines intersect each other, is at the origin
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Fig. 3 The time development of the predator density u and the
prey density v governed by the deterministic rate Eq. 2. There are
no oscillations and both populations flow, after a short transient,
toward extinction

go extinct. Figure 3 depicts the time evolution of popu-
lation densities, where indeed no oscillations occur.

Demographic stochasticity, persistence, and the effect
of enrichment

As pointed out by Durrett and Levin, spatial structure
per se is not a cure for the system considered here.
Figure 4 demonstrates what happens if different spatial
patches are connected by density independent migra-
tion (diffusion) of the populations. The deterministic
equations for a one-dimensional array of patches are:

dum(t)
dt

= μ(−2um + um+1 + um−1)

+ um

(
aum

um + vm
+ bvm

um + vm
− κ(um + vm)

)

dvm(t)
dt

= μ(−2vm + vm+1 + vm−1)

+ vm

(
cum

um + vm
+ dvm

um + vm
− κ(um + vm)

)
.

(3)

where um (vm) is the hawk (dove) density on the m-th
patch and μ is the strength of migration. For the sim-
ulation presented below, periodic boundary conditions
are assumed.

From Fig. 2, it is clear that an isolated patch below
the u-cline may escape extinction if certain external
perturbation takes it to a point above this line. If the
initial conditions of the spatial system are not uniform,

migration may provisionally supply such a perturba-
tion; thus, a certain patch may take another “round”
in the u, v-plane, as depicted in Fig. 4. This behavior,
however, is only a transient; in the long run, the system
synchronizes since migration negates spatial gradients.
In its coherent phase, the system follows a single-patch
trajectory to global extinction. Unlike (Reichenbach
et al. 2007; Jansen and de Roos 2000; Jansen and
Sigmund 1998; Janssen 1981), there is no instability that
leads to the formation of permanent spatial pattern in
the deterministic (noise free) limit of this hawk–dove
model.

We proceed to examine the effects of discreteness.
Instead of integrating numerically equations like Eq. 2
or 3, an agent-based numerical procedure is imple-
mented to treat the stochastic dynamics of individual
agents on each patch.

Our simulation technique is a generalization of the
Gillespie algorithm (Gillespie 1977), adjusted to spa-
tially segregated population. The numbers of hawks
and doves on the m-th site are integers denoted by
Hm and Dm correspondingly. Given the distribution of
individuals at certain time t, the rates of all possible
processes are identified. For example, μHm is total
rate of emigration of hawks from the m-th site, while
(aHm + b Dm)/(Dm + Hm) is the total birth rate (if pos-
itive) or death rate (if negative) for hawks at this site.

Fig. 4 Hawks vs. doves densities obtained from Euler integra-
tion of the deterministic equations (Eq. 3) for a system of ten
patches with periodic boundary conditions, μ = 1 and κ = 0.02.
The black line is the trajectory followed by a single patch initiated
at u = 0.1, v = 10, while the other lines show the path followed by
three other patches, all with initial population u = 1, v = 0.0001.
An isolated patch goes monotonically to extinction from these
initial conditions. In the spatial system, instead, the migration
from the high population patch causes the flow line of these three
patches to cross the u-nullcline, but this is only a transient and the
whole system finally went extinct



56 Theor Ecol (2012) 5:51–60

An elementary Monte Carlo cycle starts with a full list
of all rates for all possible events at all sites. An event
is then picked randomly by tossing a weighted coin
between all possibilities. If this event is, for example, a
birth of a dove on the m-th site, the number of doves
on that site grows by one unit; the time counter is
moved forward according to the Gillespie procedure
and the table of event rates is updated before the next
elementary step takes place.

Figure 5 demonstrates that discreteness by itself
(patch model) is not a stabilizing factor. When the
system is well mixed or almost well mixed, the stochas-
tic trajectories either follows the deterministic one or
reaches extinction even faster.

The system may survive (Durrett and Levin 1994a)
due to the combination of discreteness-induced noise
and spatial segregation. If the population on a certain
patch goes extinct, it may happen that two doves, but
no hawk, will arrive from a neighboring, already active,
site. In such a case, the dove population grows on the
recolonized patch and reaches a steady state quite fast,
then waits for the arrival of an immigrant hawk. If the
timescale for recolonization of this kind is smaller than
the time to extinction of a single patch, the whole sys-
tem stays alive. Large spatial systems, thus, do support
persisting densities as exemplified in Fig. 6.

This mechanism cannot work in the deterministic
limit, or otherwise when the number of animals on
a patch is very large (small κ). In such a case, the

Fig. 5 Dynamics of a single-patch stochastic scenario for κ =
0.0002. The results of the stochastic process (agent-based simula-
tion, dots) are shown together with the deterministic prediction
(lines) for the same initial conditions. The main f igure shows
the dove and the hawk populations vs. time, and the inset is the
phase portrait. The stochastic system follows, more or less, the
deterministic predictions

Fig. 6 Phase space trajectory of the total population on 100
patch system, with κ = 0.002 and μ = 0.01. The average density
(number of individuals per site) of hawks (u) and dove (v) is
plotted in the u, v-plane (main) and for each species vs. time
(inset). For this set of parameters, the hawk–dove system reaches
some equilibrium density with slight perturbations attributed to
demographic stochasticity, but none of the species goes extinct

immigration into an empty patch involves almost nec-
essarily both doves and hawks, and the system follows
its deterministic dynamics. This surprising feature of
the model is emphasized in Fig. 7. Here the lifetime
of the metapopulation (time until extinction in the
non-sustainable phase) is plotted against the parame-
ter κ that dictates the carrying capacity of a single
patch. The fact that large κ (small number of particles
per patch) corresponds to shorter lifetimes is sort of
trivial—strong demographic stochasticity is known to
lead to extinction as the system is trapped into the
empty (absorbing) state (Mobilia et al. 2006; Durrett
and Levin 1994b; Snyder and Nisbet 2000; Barkham
and Hance 1982). The nonmonotonic dependence of
the lifetime on κ implies that large number of agents at
each patch is also dangerous, as under weak stochastic-
ity the time evolution is governed by the deterministic
dynamics that leads to extinction. The maximum persis-
tence regime corresponds to intermediate stochasticity,
not too small or too large.

This phenomenon may be considered as a strong ver-
sion of Rosenzweig’s “paradox of enrichment” (Gilpin
and Rosenzweig 1972): Here even the increase of car-
rying capacity for both the victim and the exploiter
may lead to extinction since it reduces the relative
importance of stochasticity. It is interesting to note
that a similar effect has been pointed out by Tilman
(1982) for deterministic, competitive exclusion systems,
where coexistence occurs in intermediate levels of food
supply.
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Fig. 7 Time to extinction of spatially extended hawk–dove
system (an array of ten patches connected by migration, μ = 1)
as a function of κ . Here the size of the system is too small to
allow for a real steady state; the average time to extinction < t >

is plotted vs. κ . The carrying capacity of a site (the maximal
number of individuals on a site) is proportional to 1/κ . When
the carrying capacity is large (small κ), the system follows its
deterministic trajectories and the lifetime is small. When κ is
too large, the number of individuals on each site is small and
stochasticity leads to local extinctions that accumulate to yield
global death. For intermediate values of local carrying capacity,
the system reaches its maximal sustainability, as the demographic
stochasticity is strong enough to perturb the deterministic flow to
extinction, yet too weak to induce high rate of local extinctions.
Squares represent the results obtained from exact simulations,
and the line connecting them is just an interpolation to guide the
eye

Neighborhood interactions and self-interactions

In relating the analysis presented so far to the original
Durrett–Levin hawk–dove model (case 3), two issues
must be discussed. First, our system differs from the
original model in the definition of the “interaction
range” between agents. DL have considered the case
where an agent at a certain spatial location interacts not
only with members of its local community but also with
all agents in some neighborhood of its local habitat.
Our analysis allows only for local interactions, but this
reflects only the difference in the partition of area into
patches: We consider all animals within the interaction
range as a single patch. The strong migration (well-
mixed) limit is the same in both cases, so up to the
rescaling of the inverse carrying capacity parameter κ

and the migration rate μ the two modeling approaches
are the same.

The second, more subtle issue is the possibility of
self-interactions. In the original DL work, as well as in
other studies of evolutionary games on spatial domains
(Nowak and May 1992), agents were allowed to interact
with themselves. This implies that the number of hawks,

say, that interact with a specific hawk is given by the to-
tal number of hawks in its neighborhood including this
predator itself. As pointed out by Soares and Martinez
(2006), this assumption makes sense when each cell of
the lattice represents a whole group of individuals inter-
acting among themselves and with other groups as well.
With self-interaction, DL showed that the system does
support an attractive fixed point in the hydrodynamic
limit, a result that has been proven mathematically
by Perrut (2000). If, on the other hand, any agent in
the game is considered as an individual animal, self-
interactions should be avoided. As DL have pointed
out, the payoff functions on a site with H hawks and
D dove, then take the form,

hawk payoff=a(H − 1)/(H+D−1)+b D/(H+D−1)

dove payoff=cH/(H+D−1)+d(D−1)/(H+D−1).

(4)

For a site with no hawk/dove agents, the corresponding
payoff for the absent species is defined to be zero
(when DL considered the case with no self-interaction,
they have added a linear growth term that reflects the
reproduction rate of a single hawk/dove. With such a
term, the system of ODEs admit a stable manifold, so
we have omitted it here).

Given these payoffs, the well-mixed dynamics (on
a single site when the corrections due to demographic
stochasticity are neglected) is given by

du
dt

= u
(

a(u − 1)

u + v − 1
+ bv

u + v − 1
− κ(u + v − 1)

)

dv

dt
= v

(
cu

u + v − 1
+ d(v − 1)

u + v − 1
− κ(u + v − 1)

)
. (5)

To compare Eqs. 2 and 5, the phase space trajectories
of Eq. 5 are presented in Fig. 8, together with the u and
v nullclines. One observes that the general picture is
similar: No trajectory crosses the v nullcline leftward
or the u nullcline upward, so all the deterministic flows
end up at the same point. This point, however, is not the
origin but (0,1), i.e., it is the state where the population
admits only a single hawk and no dove, in which the
dynamics halts.

What happens for the stochastic, spatially segregated
system? Let us start by considering the infinite diffusion
limit, i.e., the case where the migration rate is so fast
that any agent moves into a new random location be-
tween two interaction events. Durrett and Levin have
developed a mathematical procedure that yields an
exact effective deterministic description of the time
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Fig. 8 Phase portrait of a few trajectories of Case 3 without self-
interaction (Eq. 5). The dashed lines are the u and the v nullclines

evolution of the average total population. If the average
number of hawks/doves per site (E[H] and E[D]) is
given at time t, the chance to find H hawks, say, on a
specific site is given by a Poissonian distribution with
average E[H] and the same, mutatis mutandis, holds for
the doves. Any payoff term, thus, should be replaced by
its average with respect to these two Poissonian distri-
butions. This procedure, the Durrett–Levin transform,
has been analyzed in detail by Cantrell and Cosner
(2004). It yields exact deterministic equations for the
time evolution of the average densities in the limit of
infinite number of patches (no correlations between
subpopulations) and infinite migration rate.

As noted already by Cantrell and Cosner (2004), in
the infinite diffusion limit, there is a difference between
the self-interacting and the non-self-interacting scenar-
ios. In the self-interacting case considered originally by
Durrett and Levin (1994a), the resulting time evolu-
tion for the average densities supports a stable fixed
point, while without self-interaction, the system is still
extinction prone. In fact, applying the DL transform
to Eq. 5, one finds that all constants a, b , c and d
are multiplied by the same factor 1 − e−s, where s =
E[H] + E[D]; thus, the structure of the phase portrait is
the same as in Fig. 2 and the only difference is a global
rescaling of time. The infinite diffusion limit of DL
case 3 without self-interaction is thus again extinction
prone. Intuitively, in the infinite diffusion limit, each
agent “feels” the average effect of rapidly changing en-
vironment; thus, the effective deterministic equations
are not affected by the discreteness of individuals. With
self-interaction, the situation is different, as the agent

interacts with itself on each patch; thus, its effective
environment is different.

Still, for intermediate migration rates (far from that
limit, when the rate of migration is comparable with the
interaction rates), the system without self-interactions
does admits sustained population densities, as demon-
strated in Fig. 9.

Note that the infinite diffusion limit considered here
differs, formally, from the hydrodynamic limit studied
before (Durrett and Levin 1994a; Perrut 2000). For the
sake of concreteness, let us assume an array of patches
where the typical number of agents in a patch is N0, the
rate in which agents hop to a neighboring patch is τ , and
the distance between patches is �. Formally, our infinite
diffusion limit is attained by taking τ to zero while
keeping all other parameters fixed; thus, the diffusion
constant D = �2/τ diverges. The hydrodynamic limit is
taken by rescaling both τ and � such that D is fixed.
However, in both cases, the typical number of particles
on a patch, N0, holds fixed, since the reaction rates
are kept at their original values. In general, one can
define an “effective patch”, say, as the average number
of patches an agent visits before being involved in a
single reaction (this is indeed the “Kuramoto length”
(Kuramoto 1973) considered in the theory of stochastic
chemical reactions). For both limits mentioned above,
the total umber of agents on such an effective patch
diverges; thus, they both are equivalent to the infinite
N(≡ N0�ef f ) limit considered by Kessler and Shnerb
(2008).

Fig. 9 Time evolution of hawk (u) densities and dove (v) density
in an individual-based model without self-interaction. The lines
reflect the development of the average population on a 10, 000
patches array, with κ = 0.002 and μ = 0.002. For this set of para-
meters, the hawk–dove system reaches some equilibrium density
with slight perturbations attributed to demographic stochasticity,
but none of the species goes extinct
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Discussion

The theoretical understanding of ecosystems must in-
volve some strong simplifying assumptions, aimed to
reduce the tremendous complexity of the actual dy-
namics. In the study of metapopulation persistence,
many researchers are using the stochastic patch oc-
cupancy models (SPOM; Hanski 1999; Etienne et al.
2004; Moilanen 2004; Moilanen and Hanski 1998) as
a paradigmatic framework. These models assume that
each habitat patch is either occupied or empty, i.e.,
that the timescale in which the population reaches its
local carrying capacity is relatively small. Neglecting
the details of the in-site dynamics, the theory is then
focused on extinction and recolonization events. Deco-
herence among local habitats is implicitly assumed in
these models since they treat the local extinctions as
independent random events.

It is quite easy to verify the presence of a certain
species on an island, and it is much harder to obtain the
actual number of individuals. Thus, the use of SPOMs
is invited when typical datasets gathered from field
studies are analyzed.

In laboratory experiments, like those mentioned
above, the situation is different. The affects of exter-
nal perturbations and the variations between different
patches are both small, and the monitoring of local
population size is pretty good. This situation allows one
to examine carefully the inter-patch dynamics and in
particular to try to understand the mechanisms that
induce decoherence among patches, thus allowing for
rescue and preventing a global extinction.

The ability of demographic stochasticity to stabi-
lize extinction-prone dynamics on spatial domains has
been already considered in recent works (Abta et al.
2007, 2008). As explained above, the peculiarity of
Durrett–Levin’s hawk–dove model (case 3) lies in the
absence of any steady-state coexistence solution, ei-
ther stable or unstable. In previous models, the spatial
structure allows for desynchronization among patches
and stabilizes the (otherwise unstable) fixed point or
a manifold around it. Here the stabilization mecha-
nism on spatial domains involves the crossing of the
u-cline resulting from the discreteness of the moving
individuals.

As noted above, DL model is somewhat special as
a model of population dynamics. Inspired by game
theory, it allows only frequency-dependent birth/death
rates; thus, it is hard to imagine that this model ac-
tually describes the dynamics of populations in the
experiments of Kerr et al. (2002, 2006) and Holyoak
and Lawler (1996). Our work calls for more detailed
examination of the experimental systems, to see if it

is possible that indeed some very strong Allee effect
appears such that the frequency independent reaction
rates are negligible, and in parallel, it suggests to search
for other, more traditional population dynamics models
that may support persistence without coexistence.
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