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Abstract

The dynamics of the SIS process on heterogenous networks, where different local communities are connected
by airlines, is studied. We suggest a new modeling technique for traveler’s movement, in order to avoid
an interference of the movement with the demographic parameters characterizing the metapopulation. A
solution to the deterministic reaction-diffusion equations that emerge from this model on a general network
is presented. A typical example of heterogenous network, the star structure, is studied in detail both
analytically and using agent-based simulations. The interplay between demographic stochasticity, spatial
heterogeneity and the infection dynamics is shown to produce some counterintuitive effects. In particular
it was found that, while movement always increases the chance of an outbreak, it may decrease the steady-
state fraction of sick individuals. The importance of the modeling technique in estimating the outcomes of
a vaccination campaign is demonstrated.

1. Introduction

One of the major threats for any living species is
the outbreak of an infectious disease. Even after the
development of modern medicine and the appearance
of antibiotics, the human population is still at risk
for the appearance of resistent strains of bacteria or
lethal, infectious virus species. A series of epidemic
and pandemic events in the last hundred years - from
the Spanish flu through the spread of AIDS to the
recent avian and swine flu - remind us that the dan-
ger still exists. The study of infection dynamics -
its spread, the chance of an outbreak, the effects of
pathogen infectivity, virulence and so on - is thus of
extreme importance and constitutes of a substantial
part of current ecology literature (Anderson & May,
1992; Bailey, 1975; Murray, 1993).

The recent outbreaks of various human epidemics
were characterized by very fast, and nonlocal, geo-
graphic spreads. The old scenario, known from the
middle ages - like, say, the spread of the bubonic
plague - when the disease propagated locally from

town to the neighboring villages and then to the next
town - is replaced nowadays by almost instantaneous
prevalence around the globe due to the intensive use
of air-traffic. This poses an urgent need for a new
type of infection dynamics models, and a new series
of works by Colizza, Vespignani and coworkers (Col-
izza & Vespignani, 2008, 2007; Colizza et al., 2007,
2006) have addressed this issue.

The classical mathematical models in epidemi-
ology - SIR (susceptible-infected-recovered) and
SIS (susceptible-infected-susceptible) have been pre-
sented originally for a well mixed, uniformed popu-
lation (Kermack & McKendrick, 1927; Bailey, 1975;
Weiss & Dishon, 1971). In the original form these
models admit no age nor spatial/social structure and
the analysis was bases on deterministic differential
equations. In the last decades much work has been
done in extending these models in order to include
structured populations. Moreover, for small groups of
individuals and for the first steps of the epidemics the
number of infected agents is small, hence the stochas-
tic nature of the infection-recovery process must be
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taken into account. See review at (Vespignani, 2008).
A stochastic model with a spatial structure - a

metapopulation divided among habitat patches on
a regular lattice with an inter-patch infectivity that
differs from the intra-patch one - has been presented
recently. This system was subject to extensive nu-
merical studies (Getz et al., 2005) with a few ana-
lytic results presented (Kessler & Shnerb, 2008). To
model actual human dynamics in modern world, Col-
izza et. al. have extended this type of models even
further, taking into account the heterogenous struc-
ture of urban populations and airline connectivity.
Their model describes a segregated population for
which the connections between subcommunities obey
a scale-free statistics, in agreement with recent obser-
vations regarding air-traffic networks (Guimerà et al.,
2005).

Here we show that the heterogeneity of the network
poses a new complication in the modeling procedure:
on an irregular network the movement of individual
agents interferes with the demography of the subpop-
ulations. Allowing migration between nodes on an
irregular network yields a nontrivial steady state size
distribution for the nodes that differs, almost surely,
from the initial conditions imposed in a simulation.
As a result the dynamics is affected heavily by the de-
mographic changes as the population approaches the
steady state. Here we suggest a ”travelers model”,
within which individuals stay on their original node
while infecting others on neighboring sites. In this
model the size of a site is kept fixed so the modeler
may introduce any realistic initial conditions.

The main aim of this work is to explain and discuss
this travelers dynamic within which no such interfer-
ence between demography and motion occurs. En
passant, a few interesting observations are made:

1. On heterogenous networks an increase in the
movement of agents may decrease the size of
the epidemic at the steady state, although it in-
creases the chance of an outbreak.

2. These contradicting effects of movement make
the estimation of R0 using the steady state den-
sities quite problematic.

3. Simple heterogenous networks, like a star struc-
ture, yield results that are very similar to a full

scale-free network model (Baxter et al., 2008)
4. The effect of immunization of a fraction of the

hub population is pronounced, as opposed to the
prediction based on former models.

Why there is an interference between demography
and movement on heterogenous network? On reg-
ular networks all ”nodes” (locations, cities, habitat
patches) have the same number of ”links”, i.e., of
routes agents may use to migrate to other nodes.
Starting, say, from a uniform state where all local
populations are equal, the influx of immigrant into a
node is balanced by the outbound flow of emigrants,
and in steady state all nodes admit the same popula-
tion (up to small fluctuations that may appear due to
some type of noise). On heterogenous networks, on
the other hand, the number of links is varying among
nodes. There are a few ”hubs” with thousands of
links (like big cities or airfields where headquarters
of airline carriers are located), and many dead ends
(end nodes) connected only a few, or even a single,
link. In such a case density independent migration
must introduces a drift, either towards the hubs (if
the chance per agent to move is fixed) or from the
hub (if the chance of migration per link is fixed).

Indeed, Colizza and coworkers (Colizza et al., 2007)
have assumed the following movement model: any
individual agent emigrates with a certain probability
pet unit time; upon emigration, the agent chooses its
destination at random from all sites connected to its
original location with equal chance. As explained,
such a procedure induces a drift into the hubs. This
effect may be easily recognized by looking at the
star structure presented in Fig. 1. Any individual
that leaves the end sites must choose the hub as its
destination, while the one emigrating from the hub
chooses one of eight end-sites. Accordingly, starting
from equal subpopulation on any node, the move-
ment dynamics leads to a steady state in which the
hub community is much larger. As the size of the sub-
community is a major factor determining the chance
of local outbreaks, the resulting epidemic dynamics
will be correlated almost solely with the events on
the hub, where the rest of the network remains more
or less passive.

The accumulation of agents on the hubs in the
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steady state of (Colizza et al., 2007) (the ”migration
model”) is not unrealistic, as indeed airtraffic hubs as
described above are typically found at the proximity
of big cities and megalopolises. However, it is clear
that the logic beyond this phenomenon should be re-
versed: people have not accumulated in Chicago or
in Houston because of their large airports. The large
population of a city is the reason for the existence of
an airport in its vicinity, not its result.

Here we suggest a simple movement model for
which, even on heterogenous networks, agent migra-
tion does not interfere with the demographic prop-
erties of the subpopulations. The basic idea is sim-
ple: since the vast majority of the airline travelers
porches round-trip tickets travelers will reach their
destination, stay there for a relatively short time,
and then fly back. In that sense the passengers act
like mosquitos in the process of vector transition, and
induce ”long range infection” between subcommuni-
ties. In the next sections this basic insight will be
integrated into a formal model, then the model is an-
alyzed from various aspects including its ability to
predict the effect of imperfect immunization.

2. The travelers model

Following (Getz et al., 2005; Lloyd-Smith et al.,
2005; Kessler & Shnerb, 2008) we suggest a travelers
model for the movement of human population. The
population is divided into L local communities, each
admits an integer number of individuals Ni, i = 1..L.
The set of Nis determines the demographic structure
of the metapopulation and is kept fixed in time; this
reflects the assumption that the timescale for demo-
graphic shifts is much larger than the timescale asso-
ciated with the disease outbreak. The topology of the
network is determined by links connecting subpopu-
lations, where these links correspond to airlines. The
degree of a node (number of bidirectional connection
to other nodes) is k. In Fig. 2 a concrete example is
illustrated: for this star configuration L = 9, for the
hub k = 8 and all the end nodes have k = 1.

Along this paper we keep using the star structure
as a toy model for a full scale free network. This
setup is fairly simple to simulate. It is interesting to
note that the results from this star arrangement are

very similar to those obtained from the a full scale-
free topology (Colizza et al., 2007) - it may be the
case that this toy model captures, at least for some
range of parameters, the involved hierarchy of a real
network.

Figure 1: A schematic figure illustrated as a heterogenous
metapopulation network represented with a star structure. In-
dividuals are divided in two groups: susceptible and infected.

Now let us specify the dynamics of the disease. We
consider here an SIS infection model with frequency
dependent transition [type II in the terminology of
Anderson and May (Anderson & May, 1992; McCal-
lum et al., 2001)]. The dynamics of the infectious
pathogen is determined by three parameters: β mea-
sures the infectivity, µ is the recovery rate and χ is
the chance that an individual travels and infects peo-
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ple somewhere else rather than in its own community.
If Si is the number of susceptible on the ith site and
Ij is the number of infected individuals on the j site,
the reaction kinetics is described schematically by,

Si + Ii
β(1−χ)/Ni−−−−−−−→ 2Ii

Si + Ij
βχ/Ni−−−−→ Ii + Ij

I
µ−→ S. (1)

For a well mixed population of size N the basic re-
production number for type II infection is R0 = β/µ,
in contrast with R0 = βN/µ for the type I model
(frequency independent transition). While R0 is in-
dependent of N , the chance of an outbreak is still N
dependent as will be shown below. The reason for
that is the effect of demographic stochasticity: for
small N an outbreak may be avoided or a sponta-
neous fadeout may occur even if R0 > 1, as fluctua-
tions drive the pathogen to extinction.

We have studied this model using Monte-Carlo in-
dividual based simulation and analytic mean-field ap-
proach. For the simulation, each node was occupied
by N inhabitants (here we considered only the case
where N is the same for all subpopulations), each of
which may be either susceptible or infected. The up-
date form t to t + ∆t has been carried out as follows:
the nodes are visited sequentially. If the number of
infected persons on certain node (say, the i-th patch)
is an integer Ii, p of them recover (become suscepti-
ble) where p is another integer taken from the bino-
mial distribution B(µ∆t, Ii). We now calculate the
parameter

Ĩi = (1− χ)Ii +
∑

j

χIj/kj ,

where the sum over j runs on all sites connected to
the i-th one. Ĩi is a measure for the number of sick
persons that may infect a susceptible on this site,
and the division of Ij by kj reflects the fact that a
traveler from the j site chooses its destination with
equal chance among all kj patches connected to j.
Given Ĩi, q of the susceptible change their status to
infected, where q is another integer taken from the
binomial distribution

B(1− [1− β∆t

Ni
]Ĩi , Si).

Note that 1 − β∆t/Ni is the chance of a susceptible
to escape infection from a single sick person.

3. Results

We have simulated the travelers IBM described
above on the star network of Fig. 2 (with 10 end
nodes), and compare our results with those obtained
from the model of Colizza et al. (2007). The only
difference between the two approaches is the spatial
dynamics of agents: in our model the demography
is kept fixed, while the former model allows for mi-
gration of individuals from site to site. As explained
above, since any emigrant chooses its destination at
random from all possible sites connected to its origi-
nal location, a drift towards the hub appears and the
demography changes in the migration model, and the
demography is kept fixed in the travelers model. All
simulations starts with the same number of individ-
uals on each site.

This difference between models manifests itself in
Fig. 3. A single infected individual has been placed
on one end node, an outbreak occurs, and the num-
ber of susceptible and sick persons is plotted until
the system reaches its steady state. [Indeed this is
a metastable state as any finite epidemic should dis-
appear at the end due to large fluctuation (fadeout).
However the timescale related to this rare events is
exponentially large in the total number of sick peo-
ple and is way beyond the times considered here.
(Kessler & Shnerb, 2007)]. A typical time evolution
is plotted separately for the hub and for the average
over all end nodes. The results of the interference
between agents dynamics and local demography are
clearly seen in the lower panel; evidently the drift
towards the hub causes a demographic steady state
that involves a strong depletion of the population on
the end nodes along time. As a result almost all the
activity takes place on the hub, and the overall time
evolution summed over all sites (inset) is very similar
to that of the hub alone. This should be compared
with the fixed demography travelers model suggested
here (upper panel), where a substantial part of the
activity takes place on the end nodes.

Another moral that one can gather from Fig. 3 is
that, even when the demography is kept fixed (travel-
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Figure 2: Upper Panel: Typical time development of the dis-
ease, using the fixed population dynamics suggested here, on
a star network. The results of a fully stochastic simulation
is presented, with 1000 individuals on each site, χ = 0.1 and
R0 = 2. The number of susceptible and infected on the center
(Ic and Sc) and the average number of the end sites (Ie and Se)
are indicated separately. The graphs follow the development
of the outbreak from the introduction of a single sick subject
to the steady state. In the inset the global dynamics of the
disease (total numbers of infected and susceptible vs. time)
is presented. Lower panel: the same outcomes are graphed
for the movement model considered by (Colizza et al., 2007).
Clearly, the drift towards the center increases the population,
the majority of dynamics happen there.

ers model, upper panel), the size of the epidemic on
the end nodes is substantially smaller than its size
on the hub. This happens because any susceptible
on the hub may be infected by all sick persons in the
system, while the end sites could be infected only by
the hub. In terms of the ecology of the pathogen,
the end sites act almost like ”sinks” as it is relatively
hard for a sick person there to infect a susceptible
on the hub. Indeed, the mean-field deterministic ap-
proximation discussed below predicts that the total
number of infected individuals in the system is in-
versely proportional to the level of motion (travel)
described by the parameter χ. This surprising effect
is demonstrated in Figure 3.
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Figure 3: The total density of infected individuals ρI vs. the
travel parameter χ for the star network with parameters R0 =
2, n = 10, 50 and 100. Results obtained from the analytic-
deterministic approximation, Eq. (14). While the number of
infected individuals grows on the center as χ increases, the
disease at the end sites is less and less frequent. See inset
where the corresponding system with R0 = 2, n = 10, where
αc and αe, the fraction of infected individuals on the hub and
on the end sites respectively, are plotted vs. χ.

Figure 3 summarizes the results for the chance of
an outbreak and the steady state epidemic size for
both models. It shows again that while an outbreak
is more likely for strong dispersal, the corresponding
steady state size of the epidemic ρI is (in the travelers
model) lowered.

This is somewhat surprising result. It is known
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Figure 4: Some characteristics of the stochastic simulations, all obtained for the Travelers model (upper panel) and the migration
(lower panel) model on the star geometry. Each panel shows 4 subfigures. (a) Is the chance that there is no outbreak when
a single sick individual is introduced. This chance is 100% below the critical R0 and is finite above criticality as a result of
demographic stochasticity. Note that as χ grows the chance of an outbreak increases, as expected. The steady state value of
ρI is plotted in (b) as a function of R0, emphasizing that in the round-trip travelers model the density of infectious decreases
when there are more travelers, as opposed to (a). In the migration model the differences are negligible. (c) and (d) illustrate
the dynamics on the center node, correspond to the fraction of the suspectable ρc

S (out of the total number of susceptible) and
the fraction of the sick persons ρc

I on the center node as a function of R0. Compering the upper and lower panels indicates
again that the outbreak in the migration model happens due to the growth in the total population on the center.
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that the movement of individuals facilitates the
spread of an epidemic, and in particular that the criti-
cal infection rate Rc for a spatially segregated popula-
tion decreases as χ grows (see, e.g., (Getz et al., 2005;
Lloyd-Smith et al., 2005; Kessler & Shnerb, 2008)).
One may expects, thus, that the number of healthy
people will by smaller if the migration rate is larger.
What we observe here is that, on heterogenous net-
works, increased mobility facilitates the outbreak but
reduces the size of the epidemic at the steady state.

This effect may, or may not, appear in the model
used by Colizza at. al., where migration act to in-
crease the total population on the hub. Concentra-
tion of the total population acts in favor of the dis-
ease and this (at least for some topologies) may in-
vert the sign of the response function dρI/dχ. As
seen in Figure 3, for the set of parameters used for
our simulation the steady state size of the infection
is independent of χ in the migration model.

The contradicting roles played by migration in
nonuniform spatial models - lowering Rc while de-
creasing ρI , may pose a serious problem if one is try-
ing to use the steady-state size of the epidemic ρI

in order to retrieve R0. The standard method (An-
derson & May, 1992), based on the assumption of a
well-mixed large population, obtains R0 from the re-
lation R0 = 1/(S/N), where S/N is the steady state
fraction if the susceptibles. This method has already
been criticized (Keeling & Rohani, 1995), but now
we see that it may fail on heterogenous network just
because of the topology: a glance in fig. 3 convinces
one that totally a different estimation may be ob-
tained for R0 although the threshold for an outbreak
is the same, R0 = 1, for all cases. Steady state es-
timations not only fail to give the right value, they
even fail to give the right order : a pathogen with
smaller ρI may be more dangerous, in terms of the
chance for an outbreak, than one that has larger ρI .

3.1. Vaccination strategy
Many recent studies were focused on the case of

limited immunization (Pastor-Satorras & Vespignani,
2002; Cohen et al., 2000b,a, 2003; Chen et al., 2008),
trying to explain how to immunize a population with
a minimal number of immunization supplies. This
question has became very important since the last

pandemic spread very fast while the immunization is
under preparation, limited and/or very expensive.

These studies showed that the random uniform im-
munization is a highly inefficient strategy on scale-
free networks. These networks provides an ideal envi-
ronment for the spreading of infective agents through
the hubs, and random immunization can not avoid
percolation through the network. On the other hand,
immunization based on the nodes connectivity hier-
archy (the vaccination of hubs takes place before the
vaccination of the end sites) should be used in order
to avoid outbreak. (Pastor-Satorras & Vespignani,
2002).

We examine now a vaccination strategy with a
fixed, limited number of immunization supplies on
the star network. It is already known that one should
deposit all the immunizations on the hub, trying to
disconnect different parts of the network. How does
the immunization affect the outbreak if only a frac-
tion of the hub population is immunized? Let us
check the results and compare between the travelers
scenario and the migration model.

Figure 3.1 presented the results from our IBM
Monte-Carlo. First, we initialize the network with
N suspectable individuals per site. One sick individ-
ual was introduced into the system and the process
continue according to the algorithm described above.
Once the system reached 10% of infectious people we
immune f×N suspectable on the central node where
f stands for the fraction of immunity (between 0 and
1). Only healthy subjects were immunized, so the
effect of immunization is to decrease, effectively, the
population on the hub.

The results are depicted in Fig. 3.1. In the travel-
ers model the effect of immunization is evident and an
increase of f leads to an appreciable reduction of the
chance of an outbreak. In the immigration model the
effect is much less pronounced, since there is a flow
of agents to the hub.

4. General mean-field solution

In this section we present an analytic solution to
the deterministic equations describing the dynamic
of a spatial infection process. We consider the trav-
elers model when the effect of stochasticity may be
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Figure 5: The effect of immunization for the travelers model
(upper panel) and the migration (lower panel) model both ex-
amined using the stochastic simulation on the star geometry
(N = 100). Here the chance of pathogen extinction (one mi-
nus the chance for an outbreak) is plotted against R0. In the
travelers model immunizing of agents on the central node af-
fect strongly persistence of the pathogen, while the migration
model yields much smaller effect.

neglected. As in the simulations we assume here the
same number of individuals N on each site; Ik and Sk

stand for the average infectious population and the
suspectable population respectively with the same k
. Following the standard procedure for networks we
assume that all nodes of degree k admit the same
dynamics.

Using the method presented by (Colizza & Vespig-
nani, 2008) the rate equation for the infected popu-
lation is defined through,

∆Ik

∆t
= Iin

k − Iout
k , (2)

that represent the total difference of the infectious
population during a small time interval ∆t. Iin

k and
Iout
k are the number of susceptibles who become sick

or recover, correspondingly, within ∆t. Clearly,

Iout
k = µIk, (3)

µ stands for the recovery rate, which is the only
means of exiting Ik class. the influx is,

Iin
k = (1− χ)

β

N
SkIk +

β

N
Skk

∑

k′
P (k′|k)

χ

k′
Ik′ , (4)

where the first term stands for the contagion of an in-
fectious to a susceptible individual on the same node,
and the second term describes the ability of being in-
fected by travelers from connected nodes. The sum-
mation is over k′, the degree of the linked sites, and
P (k′|k) stand for the probability of a site with k links
will be connected to a site with k′ links.

Assuming uncorrelated network, P (k′|k) =
k′P (k′)/〈k〉 (Pastor-Satorras et al., 2001; Dorogovt-
sev & Mendes, 2003), thus,

∂Ik

∂t
= (1−χ)

β

N
SkIk +χ

β

N〈k〉Skk
∑

k′
P (k′)Ik′−µIk.

(5)
In the same manner, the equation for Sk takes the
form,

∂Sk

∂t
= µIk−(1−χ)

β

N
SkIk−χ

β

N〈k〉Skk
∑

k′
P (k′)Ik′ .

(6)
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One can easily verify that these equations conserve
the local population, d(Sk + Ik)/dt = 0. This is a
result of the assumption standing in the base of the
analysis that N is time independent.

4.1. The outbreak

The basic reproductive number R0 plays a major
role in the early stages of the pandemic. R0 is es-
sentially the average number of successful offsprings
that a parasite is intrinsically capable of producing
(Anderson & May, 1992). Introducing a single in-
fected individual is equivalent, under the determin-
istic approximation, to initial conditions for which
I is slightly larger than zero, such that I/S → 0
so S ' N , S/N ' 1. Using that the relation∑

k′ P (k′)Ik′ = 〈I〉 eq. (5) takes the form

∂Ik

∂t
= (1− χ)βIk +

β

〈k〉χk〈I〉 − µIk. (7)

Let Ĩ denote 〈I〉. When multiplying the above ex-
pression by

∑
k P (k), one obtains a simple equation

for Ĩ
∂

∂t

∑

k

P (k)Ik =
∂Ĩ

∂t
= (β − µ)Ĩ , (8)

using
Ĩ0 ≡ 〈Ik|t=0〉 ≡

∑

k

p(k)Ik|t=0, (9)

the solution for this equation is

Ĩ = Ĩ0e
(β−µ)t. (10)

So we have obtained the classical result that an out-
break may occur when R0 = β

µ > 1.
The deterministic models predict a critical value

R0 = 1. However, it is known (Getz et al., 2005;
Lloyd-Smith et al., 2005; Kessler & Shnerb, 2008)
that stochastic fluctuations may cause a spontaneous
fadeout even above this critical value. For example
if β = 2 and µ = 1 then R0 = 2, it means that on
average two persons are infected by a sick individ-
ual before it recovers. Yet there is a finite chance
for the recovery of the single infected introduced (the
founder) before the first infection. As shown by the
figures above below the critical R0 outbreaks never

appear, but above this value the chance for an out-
break is not 1. This effect of stochasticity can not be
seen within this mean-field framework. This point is
discussed in detail below.

4.2. Steady state of a pandemic
In the steady state,

∂Ik

∂t
= Iin

k − Iout
k = 0, (11)

using eq. (5) and that Sk = N − Ik, we get

(1−χ)
β

N
(N−Ik)Ik +χ

β

N〈k〉 (N−Ik)k〈Ik〉−µIk = 0.

(12)
We define α as the fraction of the infectious in the
group of sites with connectivity k, i.e., Ik = αkN .
Substituting this into the above equation, one may
easily get a general description of the steady state:

(1− χ)R0(1− αk)αk + χ
R0

〈k〉 (1− αk)k〈αk〉 − αk = 0.

(13)
For simplicity, we will focus from now on on the star
structure with L sites (see Figure 1). In this case
we can divide the nodes into two classes: the central
node that holds L − 1 links and ”end nodes” hold-
ing only one connection. We define Ic, Sc, Ie, Se as
the susceptible and infectious densities on the center
and on the end nodes respectively. The steady state
equations for the infectious on the central node and
on the end nodes reads as follows,

(1− χ)R0αc(1− αc) + R0(1− αc)(L− 1)χαe − αc = 0,

(1− χ)R0αe(1− αe) + R0(1− αe)
χ

(L− 1)
αc − αe = 0.

(14)

This set of equation may be solved numerically, and
the results are depicted in Fig. 3. While the mi-
gration rules in our model keeping the overall size
of any subpopulation fixed and for the case con-
sidered each site admits the same population, the
steady state shows different density of infected in-
dividuals. As χ grows, the infected fraction on the
hub grows, but on the end site the epidemic size de-
creases. The overall density per site of infected popu-
lation, ρI ≡ (αc+(n−1)αe)/n, decreases with χ. It is
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easy to verify that this effect is weak if the movement
is rare (the first order correction to ρI , evaluated per-
turbatively for small χ, vanishes) but is pronounced
when the travel parameter χ is large. In particu-
lar for χ = 1 (infection only to neighboring sites)
αc = 1 − 1/R2

0 (growth with respect to the value
1 − 1/R0 for zero migration) but αe scales like 1/n,
so all the n−1 nodes yield non-extensive contribution
to ρI .

4.3. Stochastic vs. deterministic models
We stress again that movement does facilitate the

outbreak of an epidemic, but this effect is invisible in
the deterministic model solved above. As seen in Fig.
3b the chance of an outbreak is larger when move-
ment is larger. This, however, comes from the effect
of demographic fluctuations. Dispersal decreases the
effect of ”kin competition” between pathogens: as
the number of individuals on each site is fixed, larger
migration avoids an effective decrease in the infection
rate resulted from the depletion of susceptible popu-
lation (Keeling & Rohani, 1995). One of the approx-
imations that lead to the deterministic theory is the
replacement of numbers by densities, which implicitly
assumes infinite number of individuals on each site
such that the effect of kin competition vanishes. Kin
competition manifests itself only in stochastic models
of discrete individuals, like the Hamilton-May model
for dispersal (Hamilton & May, 1977; Comins et al.,
1980).

Hamilton and May have considered two species
which are identical in all aspects except of migra-
tion rate. On a regular lattice or any other type of
homogenous environment the fast must win (we ne-
glect for the moment the migration cost introduced
by Hamilton and May, and assume that each em-
igrant reaches its destination). The reason is that
agents do not have to compete with their offspring
on the local resources, as the offspring leave the habi-
tat patch occupied by the parent. On heterogenous
substrate, on the other hand, there is an advantage
to the slow species that may ”stick” to the oases and
will suffer less demographic losses due to migration
into bad spatial domains. While the second effect is
deterministic, the first one is stochastic and disap-
pears in the continuum limit, since in that limit the

number of individuals allowed on a patch is infinite.
For that reason the model of Hastings and cowork-
ers (Hastings, 1983) - which is a spatial version of
Hamilton-May with no migration cost - failed to re-
trieve Hamilton-May results and suggested that the
best strategy is to decrease migration rate to zero. A
recent discussion of the relation between stochastic
and deterministic models in the context of the evo-
lution of dispersal rates may be found in (Kessler &
Sander, 2009).

Similarly, here we have dealt with rate equations
based on the continuum approximation, thus we re-
alize only the suppressive effect of migration: the in-
crease of χ induces a drift of infected individuals to-
wards the hubs, that acts like a ”trap”. Actually, in
disordered system like here there is a natural ”dis-
persal cost” as some of the propagules end up in un-
favored sites; this effect leads to maximal epidemic
size at χ = 0, as obtained by Hastings (Hastings,
1983), and has been proven recently by Dockery et.
al. (Dockery et al., 2007). As shown above, although
in a fully stochastic model a larger dispersal facili-
tates the outbreak of the disease, the effect consid-
ered here does not disappear and in the steady state,
for the range of N considered below, ρI is smaller
when χ is larger.

5. Conclusions

The basic motivation of this work comes from the
pioneering studies of Colizza and coworkers, who
first suggested a realistic extension of the traditional
epidemiological models to real human populations.
These authors correctly assumed that the large hubs
of the air traffic network correspond to sites with
large population. Still their movement model mixes
the local demography with the migration dynamics
such that the modeler can not determine the steady
state demography. Here we have presented an im-
proved model in which round-trip travelers are mod-
eled as a vector for transition; using our scheme one
may plug the actual demographic numbers without
an interference of the steady state with the law of
motion of the agents.

We did not try to model a realistic airline network
in all its glory as did (Colizza et al., 2007). Instead
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we have discussed in detail the simple case of star
geometry using our technique. The results show a
very interesting difference between the outbreak dy-
namics and the steady state behavior of the epidemic.
The main take-home message is that birth-death pro-
cesses on heterogenous networks may differ strongly
from their counterparts in a well mixed population
or on a regular networks, and in particular that the
steady state size of the epidemic may not reflect the
right R0. Further extensions of this work to socially
structured population are also possible.

Finally, we have addressed another issue: the im-
pact of a vaccination campaign. It turns out that
the immigration model underestimates the impact of
vaccination on the hub as it allows for immigration of
susceptible individuals into the hub during the out-
break. Say it another way, the spatial structure is
not so important in the migration model since virtu-
ally all the activity happens on the hub. Conversely,
in the travelers model vaccination campaign is much
more effective as it allows for isolation of different
parts of the network, thus the infection can not ”per-
colate” in space.
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