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a b s t r a c t

The stability of population oscillations in ecological systems is considered. Experiments suggest that
in many cases the single patch dynamics of predator–prey or host–parasite systems is extinction
prone, and stability is achieved only when the spatial structure of the population is expressed via
desynchronization between patches. A few mechanisms have been suggested so far to explain the
inability of dispersal to synchronize the system. Here we compare a recently discovered mechanism,
based on the dependence of the angular velocity on the oscillation amplitude, with other, already known
conditions for desynchronization. Using a toy model composed of diffusively coupled oscillators we
suggest a classification scheme for stability mechanisms, a scheme that allows for either

∧
a priori (based

on the system parameters) or a posteriori (based on local measurements) identification of the dominant
process that yields desynchronization.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction1

Victim–exploiter systems are very common in nature, and their2

sustainability is a
∧
long-standing puzzle, first pointed out by ancient3

day naturalists such as Herodotus and Cicero (Cuddington, 2001).4

Although in nature such a system is usually embedded in an5

entire foodweb, the understanding of that web’s basic constituent,6

namely, the two species (predator–prey or host–parasite) system,7

is a crucial step
∧
toward the explanation of the ‘‘balance of nature’’8

in general. An ‘‘isolated’’ victim–exploiter systemmay be achieved9

either experimentally (where the only important parameters in10

a given setup are the densities of the two species involved) or11

theoretically, where the corresponding process is presented and12

(analytically or numerically) solved.13

The mathematical modeling of the
∧
two-species system is usu-14

ally based on Lotka–Volterra (LV) predator–prey equations (Lotka,15

1920; Volterra, 1931; Murray, 1993) or the Nicholson–Bailey (NB)16

map for host–parasite interaction (Nicholson and Bailey, 1935).17

Lotka and Volterra describe a predator–prey interaction (overlap-18

ping generations) by the continuous differential equations,19

da
dt

= −µa + λ1ab (1)20

db
dt

= σb − λ2ab,21

∗ Corresponding author.
E-mail address: shnerbn@mail.biu.ac.il (N.M. Shnerb).

where a is the predator density (decaying exponentially with 22

rate µ in the absence of prey), b is the prey density (growing 23

exponentially with rate σ in the absence of predators), and 24

λ1 and λ2 are the relative increase (decrease) of the predator 25

(prey) populations due to the interaction between species, 26

correspondingly. 27

The Nicholson and Bailey map is considered a fundamental 28

model for host–parasite systems, as it assumes
∧
non-overlapping 29

generations. The host density H and the parasite density P at the 30

t + 1 generation are determined by
∧

31

Ht+1 = σHte−λPt , 32

Pt+1 = cHt(1 − e−λPt ), (2) 33

where σ > 1 is the growth factor of the host in the absence of a 34

parasite. 35

Both
∧
the NB and the LV equations share some important 36

features: 37

• Neglect of spatial structure: the models assume that the 38

chance for predation or for infection is constant for any ex- 39

ploiter–victim pair of animals in the system and is independent 40

of their spatial location. This may be true if the size of the sys- 41

tem is ‘‘small’’, given the migration rate of the individuals, or 42

if dispersal induces some sort of coherence in the system, such 43

that any individual sees the same environment. 44

• Determinism: The state of the system at t dictates its state 45

in the next time step. Such a description ignores the effect of 46

noise, existing in any ecological system and experimental setup. 47

Describing a stochastic process by deterministic dynamics 48
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is, in the best case, an approximation; the quality of this1

approximation should be considered explicitly for any system2

of that type (Gardiner, 2004).3

• Instability: LV and NB both admit a coexistence fixed point;4

however, this point is not stable. The LV equations admit a5

conserved quantity K = λ1b + λ2a − µ ln(a) − σ ln(b).6

This implies that the fixed point is marginally stable: once the7

system is perturbed (say, by noise) and hits a value of K , it8

will stay on that trajectory forever. Consequently, any type of9

noise will drive the system randomly in the K space until one10

of the species goes extinct (estimation of the extinction time11

under such conditions is known as the first passage problem
∧
; see12

Redner (2001)). The NB system is even worse: its fixed point is13

unstable and the trajectory approaches extinction very
∧
quickly.14

Thus, both
∧
the LV and the NB systems are

∧
extinction prone in15

the absence of spatial-structure induced effects.16

Of course, there are lots of modifications of the naive LV17

and NB mathematical descriptions, taking into account many18

realistic factors like finite carrying capacity, time delay, Allee19

effect, age structured populations, density dependent predation,20

etc. Some of these generalized models are not extinction prone,21

admitting stable manifolds such as a stable fixed point, limit22

cycle or (for
∧
systems with more than two components) strange23

attractor. However, since the work of Gause (1934) through the24

classic experiments of Pimentel et al. (1963), Luckinbill (1974) and25

Huffaker (1958), it was known that small sized predator prey (or26

hosts and parasites) systems reach extinction in experimental time27

scales. In the last decade, the experiments of Holyoak and Lawler28

(1996), Kerr et al. (2002, 2006), Kirkup and Riley (2004) and Ellner29

et al. (2001) demonstrate the fact that systems go extinct rapidly inQ130

the well-mixed limit while persisting way above the experimental31

time (up to hundreds of generations) when the population is32

spatially segregated. It follows that in many cases, and perhaps33

even generically, victim–exploiter systems are unstable in thewell-34

mixed limit, and acquire their stability only due to the spatial35

structure.36

These findings provide support for Nicholson’s (1933) old pro-37

posal regarding migration induced stabilization, i.e., that desyn-38

chronization between weakly coupled spatial patches, together39

with the effect of migration,
∧
stabilizes the global populations. To40

understand the mechanism, let us imagine a metapopulation on41

two patches, where within each patch the population oscillations42

are governed by, say, Lotka–Volterra dynamics where constant43

diffusion (i.e., density independent per capita migration rate) ex-44

ists between these two patches. Clearly, as emphasized in Fig. 1,45

if the oscillations on these two patches desynchronized, e.g., if46

one of the patches is densely populated while the other is, at the47

same time, diluted, migration between patches pushes the whole48

system inward toward the coexistence fixed point, yielding sus-49

tained oscillations. However, one should bear in mind that dis-50

persal is a double-edged sword, as it tends to reduce population51

gradients and induce synchronization. The litmus test for Nichol-52

son’s proposal is thus as follows: is the diffusion among patches53

weak enough to allow
∧
noise induced desynchronization, but at the54

same time strong enough to stabilize desynchronized patches? If55

this is to be the case, the
∧
desynchronization–diffusion stabilization56

mechanism may work.57

The conditions for desynchronization in diffusively coupled58

patches have been examined inmany studies, and themain results,59

summarized in a recent review article (Briggs and Hoopes, 2004),60

are as follows:61

• For any deterministic network of N identical patches, if the62

migration between patches is symmetric or almost symmetric63

(i.e., the diffusion of the prey and the predator are, more64

or less, the same), the dispersal between patches yields65

Fig. 1. Population oscillation on two spatial patches coupled by migration. If both
patches desynchronize, one may find one of them (A) in the dense population state
and the other one (B) in the diluted phase. Diffusion tends to decrease population
gradients, and hence the whole system flows

∧
toward the coexistence fixed point,

represented in the lower panel by an asterisk.

synchronization. Accordingly, the homogenous manifold is 66

stable – small spatial fluctuations are smeared out bymigration 67

– and the stability properties of the fixed point are identical 68

with that of the non-spatial model (Crowley, 1981; Allen, 1975; 69

Reeve, 1990). Thus, the effect of migration alone does not 70

resolve the instability problem; if the well-mixed system is 71

extinction prone, so is its spatial analogue. An exception is the 72

result of Adler (Adler, 1993; Reeve, 1988; Taylor, 1998) for the 73

discrete time NB model, where some initial conditions seem 74

to converge, or almost converge, to a periodic orbit for some 75

range of migration values. In this paper we limit ourselves to 76

continuous time models, and the relation of Adler’s result to the 77

presented stabilization mechanisms is briefly discussed below. 78

• The system may become desynchronized in the presence of 79

spatial heterogeneity, e.g., where the reaction parameters vary 80

on different spatial patches (Murdoch and Oaten, 1975). In that 81

case, the intrinsic dynamic at any localized patch takes place on 82

different time scales for the same concentrations, so diffusion 83

fails to synchronize different patches. This mechanism may 84

be generalized to include not only ‘‘quenched’’ heterogeneity 85

but also environmental stochasticity, i.e., where the reaction 86

parameters are subject to spatio-temporal fluctuations (Reeve, 87

1988, 1990). 88

∧
• Diffusion induced instability may occur if the migration rate of 89

the predator is much smaller than that of the prey,
∧
particularly 90

if the preymigration rate is zero (Jansen, 1995; Abta and Shnerb, 91

2007b). Q2 92

Recently, we presented another solution to this puzzle (Abta 93

et al., 2007a). The solution is, mathematically speaking, more 94

generic, as it depends only on demographic stochasticity (which Q3 95

must exist in both natural and experiment systems) and is inde- 96

pendent of external assumptions, such as space–time fluctuations 97

or variance inmigration patterns.We have shown that the basic in- 98

gredient that leads to desynchronization is the dependence of the 99

angular velocity of the orbit on its amplitude, a generic feature of 100

Please cite this article in press as: Abta, R., et al., Stabilization of metapopulation cycles: Toward a classification scheme. Theoretical Population Biology (2008),
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nonlinear systems. The interaction between nonlinearity and noise1

stabilizes the otherwise unstable fixed point.2

In order to understand the observed stability of a spatially ex-3

tended victim–exploiter system, one should consider a few possi-4

ble mechanisms. Typically, the system admits both demographic5

and environmental stochasticity, the migration rates are at least6

slightly different and the exact mathematical description of the7

nonlinear dynamics is unknown. In this paper we provide an initial8

sketch of a classification scheme based on a toy model first pre-9

sented in (Abta et al., 2007a). It turns out that all the suggested10

mechanisms for desynchronization induced stability may be de-11

scribed by that simple toymodel, and that only 3–4 parameters are12

needed for an
∧
a priori estimate of the relative importance of cer-13

tain mechanisms. Moreover, even when a sound estimate of these14

parameters is impossible, the insight gained from the toy model15

allows one to identify
∧
a posteriori the dominant mechanism using16

local measurements or observations.17

Throughout this paper, we limit ourselves to the continuous18

time, two-patch case; more complicated situations (and the19

important question of synchronization length given the nonlinear20

dynamics and the migration rate) will be addressed elsewhere.21

In the next section we describe the toy model, then use it to22

analyze and explain the stabilizing mechanism suggested thus far.23

∧
A priori and a posteriori means of identification are suggested in24

each case. While far from being complete, we believe that the25

scheme presented here may serve as a basic tool for the analysis26

of desynchronization on spatial domains, as will be discussed in27

the last section.28

2. Toy model: Coupled oscillators29

Let us assume that the well-mixed dynamics of an ecological30

system is unstable, i.e., that the amplitude of oscillations around31

the coexistence fixed point grows in time until extinction. We32

assume further that the system acquires its stability due to spatial33

structure, and limit ourself to the case of two coupled patches.34

A simple, and quite generic description of the deterministic35

nonlinear dynamics around the coexistence fixed point is given by36

a toy model that deals with the phase space behavior of
∧
diffusively37

coupled oscillators (the origin of that toymodel corresponds to the38

coexistence point of the LV/NBmodels), where the angular velocity39

depends on the phase space location:40

dx1
∂t

= ω(x1, y1)y1 + D1(x2 − x1) + αx141

dy1
∂t

= −ω(x1, y1)x1 + D2(y2 − y1) + αx2 (3)42

dx2
∂t

= ω(x2, y2)y2 + D1(x1 − x2) + αy143

dy2
∂t

= −ω(x2, y2)x2 + D2(y1 − y2) + αy2.44

Here α stands for the instability, and it corresponds to the45

Lyapunov exponent of the (continuous time analogue of the)46

Nicholson–Bailey system; the marginally stable (Lotka–Volterra)47

case corresponds to α = 0. In the marginal case the radius of48

oscillations r is conserved on the homogenous manifold, but the49

angular velocity may depend on either r , the radius of oscillations,50

or θ , the azimuthal angle. We are going to show that the essence51

of all the mechanisms that yield desynchronization is captured52

by this model. The only difference between them is related to53

the function ω(x, y): if omega is fixed, the system synchronizes54

and the oscillation amplitude grows unboundedly. When ω differs55

between patches for some reason, desynchronization occurs, and56

the oscillation stabilizes.57

The dependence of the angular velocity ω on the phase space 58

coordinates is quite complicated for the NB and LV models. Things 59

become much simpler when the dependence of ω is either on the 60

distance from the coexistence fixed point r or on the azimuthal 61

angle θ . In particular, if ω is θ independent, the system of Eq. (3) 62

becomes simpler in polar coordinates. Defining ri ≡

√
x2i + y2i 63

for i = 1, 2, and θi ≡ arctg(yi/xi), the total phase Φ = θ1 + 64

θ2 decouples and the
∧
three-dimensional phase space motion is 65

dictated by the equations
∧

66

Ṙ = −2D sin2
(

φ

2

)
R 67

ṙ = −2D cos2
(

φ

2

)
r 68

φ̇ = −2D
(
R2

+ r2

R2 − r2

)
sinφ + [ω(r2) − ω(r1)], (4) 69

where φ ≡ θ2 − θ1, R ≡ r1 + r2, and r ≡ r2 − r1. Note that φ 70

represents the phase desynchronization between patches while r 71

is the amplitude desynchronization. 72

2.1. Unstable system: Constant angular velocity 73

The simplest case, where the angular velocity is location 74

independent, ω(x, y) = ω0, and the migration rates are equal, 75

D1 = D2 = D, allows for simple analysis. The problem is reduced 76

to coupled harmonic oscillators. As Eq. (3) are now linear, the 77

Lyapunov exponents of the
∧
four-dimensional system are given by 78

the eigenvalues of the matrix
∧

79−D ω0 D 0
−ω0 −D 0 D
D 0 −D ω0
0 D −ω0 −D

 , (5) 80

which are −2D ± iω0 and ±iω0. The first two eigenvalues 81

correspond to the relaxation of the
∧
four-dimensional dynamics 82

to the homogenous (invariant) manifold, where x1 = x2 and 83

y1 = y2, and the Lyapunov exponent is −2D. After a transient 84

time, the concentration on both patches is equal and themigration 85

term becomes irrelevant. At this point the system is equivalent 86

to a single patch system, the trajectories are bounded to the 87

homogenous manifold, and the quantity R ≡ r1 + r2 is conserved. 88

The polar representation (4) is
∧

89

Ṙ = −2D sin2
(

φ

2

)
R 90

ṙ = −2D cos2
(

φ

2

)
r 91

φ̇ = −2D
(
R2

+ r2

R2 − r2

)
sinφ. (6) 92

Clearly the phase desynchronization φ (and consequently r) 93

approaches zero, leaving the invariant manifold R marginally 94

stable, Ṙ = 0. 95

Let us consider now the effect of noise. As explained above, for 96

a system that admits a conserved quantity, like in the LV model, 97

a single perturbation simply takes the system from one value of 98

the conserved quantity (K for the LV case, R here). Noise, a series 99

of uncorrelated perturbations, thus induces some sort of random 100

walk in the conserved quantity space. As both K and R reflect 101

the distance from the fixed point and are therefore bounded from 102

below, the random motion leads to larger and larger values of the 103

conserved parameter in the long run. In the LV case, this implies 104

extinction when, due to the noise, one of the species reaches zero 105

Please cite this article in press as: Abta, R., et al., Stabilization of metapopulation cycles: Toward a classification scheme. Theoretical Population Biology (2008),
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density. The coupled oscillator model does not admit an intrinsic1

definition of extinction, but clearly if R grows unboundedly the2

system is in its ‘‘extinction phase’’. Adding repulsion to the system3

(i.e., α > 0) simply yields a rigid shift of the Lyapunov exponents4

by α, and thus the marginally stable (LV like) system becomes5

unstable, Nicholson–Bailey like.6

2.2. Spatial heterogeneity (SH)7

The simplest stabilizing mechanism takes place when the8

environment is not homogenous, and the process parameters, like9

the growth rate of the prey, vary from one patch to another.10

In fact, the observation that diffusive coupling between dif-11

ferent spatial patches may stabilize otherwise unstable dynam-12

ics has been carried out in few disciplines independently. In13

ecology, (Murdoch and Oaten, 1975) suggested that dispersal be-14

tween
∧
Lotka–Voltera patches with spatial variability may stabilize15

the coexistence fixed point. Subsequent studies (Crowley, 1981
∧
,16

Ives 1992,
∧
Murdoch et al., 1992; Taylor, 1998) consider the ef-Q4

Q5
17

fects of multi-patch systems, parasitoid aggregation, difference in18

diffusion parameters, density different migration, and other com-19

plications. In chemistry, on the other hand, this stabilization is20

known as ‘‘oscillator death’’, and was observed by Bar-Eli (1985)21

in the context of coupled chemical oscillators. That basic idea has22

been applied, since, to other diffusively coupled systems like neural23

oscillators (Kopell and Ermentrout, 1990) and calciumdensity fluc-Q624

tuations (Tsaneva-Atanasova et al., 2005). Mathematically speak-Q725

ing, the stabilizing effect of diffusive coupling between two sites26

on a
∧
single-species, extinction prone chaotic system has been con-27

sidered by Gyllenberg et al. (1996).28

Our toy model may be used very easily in order to demonstrate29

the fixed point stability for non-identical (different angular30

velocities, ω1 6= ω2) victim–exploiter patches.31

∂x1
∂t

= ω1y1 + D(x2 − x1) + αx132

∂y1
∂t

= −ω1x1 + D(y2 − y1) + αy1 (7)33

∂x2
∂t

= ω2y2 + D(x1 − x2) + αx234

∂y2
∂t

= −ω2x2 + D(y1 − y2) + αy2.35

As this system is still linear, it may be diagonalized around the36

(only) fixed point at zero. When α = 0, the Lyapunov exponent37

Γ for that fixed point turns out to be negative as long as |δ| ≡38

ω2 − ω1 6= 0 for any D, and approaches zero (marginal stability)39

if the dispersal is very small (no connection between oscillators),40

very large (
∧
single-oscillator limit) or if the system is homogenous41

(δ → 0). The Lyapunov exponent is given by the equation in Box I
∧
,Q842

and its typical behavior is illustrated in Fig. 2. Linearity implies that43

if the fixed point is stable it is also globally attractive.Γ parametric44

dependence is characterized by the following properties:45

• Without loss of generality, min(ω1, ω2) may be scaled to46

unity by rescaling the time. Thus the stability is determined47

by three parameters: migration rate, repulsion (α), and the48

desynchronization term δ > 0.49

• Γ is a
∧
non-monotonic function of the migration rate; close to50

zero migration, Γ − α vanishes linearly with D, while for large51

diffusion it decays like 1/D. Maximum stability is obtained at52

the ‘‘optimal’’ dispersal D = δ/2; in which case Γ = α − δ/2.53

• The only effect ofα is a rigid upward shift ofΓ , as demonstrated54

in Fig. 2,where the dashed line indicates the border between the55

stable and unstable regime.56

• For fixedmigration an increase of δ always helps to stabilize the 57

system, but the effect saturates at δ = 2D. Accordingly, for any 58

α, there is a critical diffusion below which the system turns to 59

∧
being unstable, independent of the level of heterogeneity. 60Q9
Given that the system owed its stability to the migration 61

between spatial patches, our toy model suggests an
∧
a priori 62

estimate of the effect of spatial heterogeneity. The system will 63

stabilize if D ∼ δ and D, δ > α. Experimentally, α should be 64

gathered from the single patch time to extinction, and if the decay 65

is slow, and the populations oscillate a few times before extinction, 66

one may acquire an estimate of ω1 and ω2 and find δ. If it is also 67

possible to attain an estimate for the per capita migration rate 68

between patches, a reliable prediction about the importance of the 69

SH mechanism may be made. 70

Even if the actual parameters cannot be recovered, our model 71

allows for an
∧
a posteriori assessment of the role of spatial 72

heterogeneity, based on local measurements, at least in some 73

cases. The polar version of Eq. (7) is
∧

74

Ṙ =

[
α − 2D sin2

(
φ

2

)]
R 75

ṙ =

[
α − 2D cos2

(
φ

2

)]
r 76

φ̇ = −2D
(
R2

+ r2

R2 − r2

)
sinφ + δ. (8) 77

If r is negligible (e.g., when D � δ), φ satisfies an equation for a 78

forced pendulum,φ = arcsin(δ/2D). Thus, the SH route to stability 79

is characterized, at least in this parameter regime, by a constant 80

phase between the patches. 81

To get the flavor of all these consideration, we present in Fig. 3 82

the real space trajectories and the phase desynchronization time 83

evolution for two coupled LV patches with spatial heterogeneity. 84

One may realize the constant phase between patches that reflects 85

the balance between the synchronizing effect of migration and the 86

desynchronization induced by the heterogeneity. 87

To conclude, one should suspect that the SH mechanism plays 88

an important role in the stabilization of a certain system if: 89

• An
∧
a priori assessment of the system parameters reveals that 90

the characteristic migration rate is of order of the typical 91

angular velocity difference between patches. 92

• Measurements of local population density show, at least on 93

average, a constant phase between patches. 94

2.3. Environmental stochasticity (ES) 95

The above framework may also be used to consider the 96

stabilizing effect of spatio-temporal environmental
∧
stochasticity 97

(ES) (Reeve, 1988, 1990), at least in the large migration/weak 98

desynchronization limit, as exemplified in Fig. 4. If on both patches 99

the radial velocity takes the form ωi = ω0 + ζi(t), where i is 100

the patch index and ζ is a white noise that satisfies 〈ζ (t)ζ (t ′)〉 = 101

Υ δ(t − t ′) (here δ is the Dirac delta function), the φ variable in (7) 102

obeys
∧

103

φ̇ = −2D
(
R2

+ r2

R2 − r2

)
sinφ + ξ(t), (9) 104

where ξ ≡ ζ2 − ζ1 is also a Gaussian white noise. For small r this 105

equation is equivalent to an overdamped noisy pendulum, and the 106

desynchronization parameter φ is distributed Gaussianly around 107

zero, where its second moment satisfies 〈φ2
〉 ∼ Υ /D (Gardiner, 108

2004). 109

The resulting motion on the invariant manifold satisfies
∧

110

Ṙ = (α − Υ ) R (10) 111

Please cite this article in press as: Abta, R., et al., Stabilization of metapopulation cycles: Toward a classification scheme. Theoretical Population Biology (2008),
doi:10.1016/j.tpb.2008.08.002
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Γ = α + Re

[
− D + 1/2

√
4D2 − 4ω1δ + 2

√
− (δ + 2ω1)

2 (
−δ2 + 4D2

)
− 4ω1

2 − 2 δ2

]
Box I.

Fig. 2. The Lyapunov exponent of the system (7), plotted vs. the migration rate D. Parameters are ω1 = 1
∧
, and ω2 = 1.2, 1.4, 1.6, 1.8, as indicated by the legend; α = 0.2.

Note that the system attains its maximal stability as D = δ/2, as predicted. The inset shows the same lines for α = 0 in a log–log plot, to emphasize the asymptotic behavior
D and 1/D.

Fig. 3. The time evolution of two diffusively coupled Lotka–Volterra patches with spatial heterogeneity. In the absence of migration the inter-patch dynamics is governed
by Eq. (1) with µ = σ = λ = q, where q = 1.4 on the first patch and q = 1 on patch number 2. The fixed point is thus at (1, 1) for both patches, but the angular velocity,
given (close the fixed point) by ω =

√
µσ , is different. Both patches have the same initial conditions (predator density = 2.5, prey density = 1), and their phase space

trajectories are illustrated in the upper two panels, where the
∧
gray level represents time (darker points = later time). The phase φ between the two trajectories was initially

zero and growth was due to the differences in angular velocities; in the presence of such phase differences, the migration becomes a stabilizing factor (see Fig. 1). In the
lower left panel the desynchronization phase is shown to first increase, due to the spatial heterogeneity, then saturate because of the effect of migration. The overall result is
a flow of the system

∧
toward the fixed point at (1, 1), as illustrated in the lower left panel.

∧
Themigration rate was taken to be 0.2, and the results were obtained using forward

Euler integration of the equations of motion with dt = 0.001. No noise was introduced and the trajectories are fully deterministic; in the presence of noise the population
densities are distributed normally around the fixed point.

and the fixed point is stable if Υ > α. One should suspect that1

the ES mechanism plays an important role in the stabilization of2

certain system if:3

• An
∧
a priori assessment of the system parameters reveals 4

that Υ is of order α, i.e., the characteristic differences in 5

oscillation rates of a single patch are larger than the ‘‘death rate’’ 6
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Fig. 4.
∧
The same as Fig. 3, but now q jumps randomly between 1.4 and 0.6. The convergence to the fixed point is much slower, and the (absolute value of the)

desynchronization phase fails to saturate.

(the inverse extinction time) of such a patch.1

∧
• Aposteriorimeasurements show correlations between the fluc-2

tuations of the desynchronization angle φ and the fluctuating3

radius of oscillations R, but no connection between the ampli-4

tude difference r and the phase φ. This is in sharp contrast with5

the ADAV mechanism considered below, where the r differ-6

ences induce the desynchronization.7

2.4. Jansen instability (JI)8

More than ten years ago, Jansen (Jansen, 1995; Jansen and de9

Roos, 2000; Jansen and Sigmund, 1998) put forward the idea of10

linearly unstable orbits of the Lotka–Volterra dynamics, i.e., orbits11

in the homogenous manifold for which the highest absolute12

value of an eigenvalue of the Floquet operator is larger than 1.13

This may occur only if the migration properties of the prey and14

the predator are different. In the case of equal diffusivities, the15

migration term factors out from the Floquet operator, and the16

stability properties of orbits lying in the invariant manifold are the17

same as their matching trajectories on a single patch (Abarbanel,18

1995). However, Jansen pointed out that if one sets Db = 019

in the Lotka–Volterra equations, some orbits on the homogenous20

manifoldmay becomeunstable. This instability leads to a deviation21

of the trajectory from the homogenous manifold, and it turns out22

that the resulting flow is inward, leading to sustained oscillations23

of finite amplitude.24

We have discussed Jansen’s stabilization mechanism in a25

different publication (Abta and Shnerb, 2007b); here we show26

how to incorporate this instability in our toy model. It turns out27

that the underlying mechanism relates to the dependence of the28

angular velocity along the orbit on the azimuthal angle, such that29

there are slow and fast regions along a single orbit. The angular30

velocity gradient creates a ‘‘shear’’ that tends to separate close31

points along the orbit, as in the CD region along the Lotka–Volterra32

orbit shown in Fig. 5. In the absence of migration to oppose that33

tendency, the system desynchronizes close to that part of the orbit34

and subsequently flows inward
∧
; see Fig. 6.35

Fig. 5. An orbit of the LV dynamics (a is the predator density, b is the prey) and its
fast and slow regions. For a two-patch system, if one patch is at point A along the
orbit and the other patch at B, since the A patch is moving faster along the line it
will get closer and closer to B during their flow toward the slow region. On the other
hand, in the exit from the slow region the patch at D moves much faster than that
at C, so they will desynchronize. As the predator density along this branch is almost
constant, the only factor that may avoid desynchronization is the prey migration.
In the absence of prey migration, the two patches reach the points C′ and D′ , where
the predator migration produces an inward flow.

We canmimic the Jansen mechanism using our toy model with 36

ω(θ). Specifically, the coupled oscillator model with
∧

37

∂x1
∂t

= ω(θ1)y1 + Dx(x2 − x1) (11) 38

∂y1
∂t

= −ω(θ1)x1 + Dy(y2 − y1) 39

∂x2
∂t

= ω(θ2)y2 + Dx(x1 − x2) 40

∂y2
∂t

= −ω(θ2)x2 + Dy(y1 − y2), 41
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Fig. 6. The time evolution of two diffusively coupled, identical Lotka–Volterra patches with no prey migration (the predator migration rate is 1,µ = σ = λ = 1).
∧
The initial

conditions are predator density = 12.5 on the first patch and 12.4 on the second patch, both with initial prey density 1. The phase space trajectories (darker points = later
time) on each patch are shown on the upper panels, and the dynamics projected on the homogenous manifold (average populations) is graphed in the lower left panel. One
can easily

∧
recognize that the inward flow happens during the multiplication stage of the prey, as suggested by the analysis following Fig. 5.

where Dx = D,Dy = 0 and ω(θ) may lead to the same type of1

instability.Q102

To prove that this toy model actually yields Jansen’s instability,3

we have used (i ∈ 1, 2)4

ṙi =
(xiẋi + yiẏi)

ri
θ̇ =

(xiẏi − yiẋi)
r2i

,5

and6

r = r2 − r1 R = r2 + r1 φ = θ2 − θ1 Φ = θ2 + θ1. (12)7

The flow in the invariant manifold (φ = r = 0) satisfies
∧

8

Ṙ = 0 (13)9

Φ̇ = 2ω(Φ),10

while the linearized equations for the desynchronization ampli-11

tude r and the desynchronization angle φ satisfy
∧

12

∂

∂t

(
φ
r

)
=

(
2
dω
dΦ

+ 2Dx sin2(Φ/2) −
2Dx

R
sin 2Φ

2DxR sin 2Φ −4Dx cos2(Φ)

)(
φ
r

)
. (14)13

Using the Floquet operator technique to analyze the stability of14

an orbit by integrating (14) along a close trajectory (
∧
R constant),15

one finds the stability map presented in Fig. 7. Two unstable16

regions appear, for large and small Dx. Note that in our toy model17

the eigenvalues of the Floquet operator are R independent, so all18

orbits share the same stability. In a realistic system, as in the LV19

model, the dependence of ω on θ changes from one orbit to the20

other, and a disk of stable orbits appears close to the coexistence21

fixed point. One can easily show that, if α = 0, Ṙ is amonotonically22

decreasing quantity, vanishing only on the invariant manifold.23

Accordingly, a limit-cycle like behavior is observed on the inner24

surface of the unstable disk, as demonstrated in Abta and Shnerb25

(2007b).26

In the generic case of an unstable
∧
dynamics on a single patch,27

i.e., α > 0, the situation is more complicated. First, the basic28

analytical tool, the Floquet operator technique, fails in that case as29

Fig. 7. Stability diagram in theω1–Dx plane for the Floquet operator for the coupled
oscillator system described by Eq. (11) with Dy = 0 andω = ω0 +ω1 cos(θ −π/4).

the trajectories in the invariant manifold are not periodic. Second, 30

α appears also in the transfer matrix (14) in a
∧
non-trivial way. 31

However, assuming that the system is close to the marginal limit 32

(small α), one can characterize the systems in which stability is 33

archived via the Jansen mechanism: 34

∧
• A priori, the system should allow for a large difference between 35

the migration rate of the two species involved, and in a 36

single patch the angular velocity around the coexistence point 37

strongly depends on the azimuthal angle. 38

• As explained in Abta and Shnerb (2007b), the instability 39

manifests itself when the azimuthal angular velocity gradient 40

is large, and is not balanced by the diffusion. This happens 41

when |∂ω/∂θ | takes itsmaximumalong the trajectory at a point 42

where the fast migrating species gradient, |∂x/∂θ |, is minimal. 43

The inward flow, thus, occurs at a specific point along the 44

trajectory, whichmay serve as a basic
∧
a posteriori identification 45

of the JI mechanism. 46
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Fig. 8. Extinction times for the unstable, coupled oscillator cartoon of the
Nicholson–Bailey model. Eq. (15) were integrated numerically (using Euler
integration with ∆t = 0.002) for α = 0.0001 and ω = ω0 + r/2 for different
noise amplitudes ∆ and diffusion constant

∧
D. The ‘‘extinction time’’ (extinction is

declared when R becomes larger than some arbitrary value R0) is plotted for four
different noise levels against the diffusion constant, and the transitions at high
and low D are implicit. The lifetime of the system for large noise (∆ = 0.1, 0.2,
triangles) diverges beyond our computational abilities for D = 0.01. Note that,
as D approaches infinity, the arguments (16)–(19) must fail, as for a single patch
the extinction time is inversely proportional to the noise level; this explains the
crossing of the lines in the

∧
right-hand side of the figure.

2.5. Amplitude dependent angular velocity (ADAV)1

This mechanism has been presented by us recently in (Abta2

et al., 2007a). If the migration rate of the exploiter is close to3

that of the victim, this is the only known mechanism that yields4

stability in perfectly smooth environments, without spatial or5

spatio-temporal heterogeneity. Hence, it seems to be the only6

possible explanation
∧
for the numerical results showing sustainable7

predator–prey systems on perfectly homogenous spatial domains8

with equal diffusivities (Wilson et al., 1993; Bettelheim et al., 2000;9

Washenberger et al., 2006) and perhaps also
∧
for the experimentally10

calibrated numerics for bacterial systems (Kerr et al., 2002, 2006).11

The mechanism requires migration, nonlinear dynamics and12

noise, and its route to desynchronization is the dependence ofω on13

r . In terms of the toy model, and with additive noise, the Langevin14

equations take the form
∧

15

∂x1
∂t

= αx1 + ω(x1, y1)y1 + D(x2 − x1) + η1(t)16

∂y1
∂t

= αy1 − ω(x1, y1)x1 + D(y2 − y1) + η3(t) (15)17

∂x2
∂t

= αx2 + ω(x2, y2)y2 + D(x1 − x2) + η2(t)18

∂y2
∂t

= αy2 − ω(x2, y2)x2 + D(y1 − y2) + η4(t),19

where η is a white noise that satisfies 〈η(t)η(t ′)〉 = ∆2δ(t − t ′).20

Assuming ω(xi, yi) = ω(ri), the system is invariant with respect to21

global rotation, and thus it reduces to the
∧
three-dimensional phase22

space:23

Ṙ =
(
α − 2D sin2(φ/2)

)
R + η̃R24

ṙ =
(
α − 2D cos2(φ/2)

)
r + η̃r (16)25

φ̇ = −2D
(
R2

+ r2

R2 − r2

)
sinφ + ω(r2) − ω(r1) +

(
η̃1

r1
−

η̃2

r2

)
.26

Accordingly, close to the invariant manifold (r = φ = 0) the27

chance P(r) to find amplitude difference r is given by
∧

28

P(r) ∼ exp[−(2D − α)r2/∆2
]. (17)29

Fig. 9.
∧
Noise induced transition for the coupled oscillator cartoon of the

Nicholson–Bailey model. Eq. (15) were integrated numerically (using Euler
integration with ∆t = 0.002) with α = 0.0001, D = 0.01 and ω = ω0 + r/2
for different noise amplitudes ∆. The total distance R (averaged over 100 runs) is
presented, in logarithmic scale, against time measured in units of ω0 . Small noises
are followed by exponential growth of the oscillation amplitude, as suggested by
the deterministic part of (15). The larger the noise, the smaller the slope of this
diverging line becomes

∧
. If the noise is large enough, R saturates at a finite value, as

seen more clearly when the scale is not logarithmic (inset).

The η terms in the equation for φ vanish at large R, and only 30

the angular velocity gradient, ω′
≡ dω/dr ,

∧
determines the 31

desynchronization: 32

〈φ2
〉 ∼

ω′(r)2∆2

D2(2D − α)2
. (18) 33

Consequently
∧
, 34

〈R2
〉 ∼

∆2

D〈φ2〉 − α
=

∆2

ω′(r)2∆2/[D(2D − α)2] − α
. (19) 35

The system becomes unstable when either r2 or R2 diverge. The 36

first criterion for stability comes from the amplitude synchroniza- 37

tion parameter, 2D > α, so the diffusion should increase above 38

some threshold value in order to prevent desynchronized extinc- 39

tionwhere the system acts as if made of two disconnected patches. 40

If the migration rate is too large (i.e., if α becomes larger than 41

[ω′(r)]2∆2/(2D− α)2 ∼ ω′2∆2/D2), the system synchronizes and 42

the deterministic flow leads to synchronized extinction. Note that 43

close to the low
∧
D transition the extinction rate grows with the 44

noise, while close to the second transition, the increase of noise 45

amplitude ∆ yields lower extinction rates, emphasizing the fact 46

that the stability is
∧
noise induced. This feature is clearly seen in 47

Fig. 9, where for small noise the oscillation amplitude grows ex- 48

ponentially in time while for large noise the oscillation stabilizes. 49

Eqs. (18) and (19) were derived under the assumption that 50

the oscillation frequency depends linearly on the slope. If, on 51

the other hand, ω′ is a
∧
non-uniform function of the amplitude, 52

the oscillations will grow sublinearly (for the LV model) or 53

exponentially (inNB case)with time, until they reach a phase space 54

region where ∂ω/∂r is large enough. For an LV-like system
∧
this 55

may lead to the appearance of a ‘‘soft’’ limit cycle — exponential 56

convergence from the outside,
∧
random walk inside, similar to 57

Jansen’s result. For a detailed comparison see Abta and Shnerb 58

(2007b). 59

A simple illustration of the ADAV mechanism for the LV case 60

is given in Fig. 10. Here, two patches are coupled by migration 61

in the absence of noise, such that the homogenous manifold 62

(where the two patches are synchronized) is stable. One
∧
notices 63
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Fig. 10. The time evolution of two diffusively coupled, identical Lotka–Volterra patches with different initial conditions. In the absence of migration the dynamics on each
site obeys Eq. (1) with µ = σ = λ = 1.

∧
The initial conditions are predator density = 2.5 on the first patch and 1.5 on the second patch, both with initial prey density 1. In

the absence of noise, migration makes the system homogenous after some characteristic time, leaving both patches synchronized; the desynchronization phase first grow
due to the dependence of angular velocity on the oscillation amplitude, then decays as a result of migration (the parameters are migration rate = 0.02, Euler integration
with dt = 0.001). Note the decrease of the oscillation amplitude as a result of the initial difference; in the presence of noise (e.g., demographic stochasticity), differences
between patches are generated continually, and the system is pushed

∧
toward the fixed point.

that, imposing different initial conditions between patches, the1

inward flow is much stronger during the synchronization process.2

Here, the system relaxed into a state of homogenous oscillations;3

in the presence of noise this process is iterated and may yield4

convergence to the fixed point.
∧

5

• A priori, the relative importance of the ADAV mechanism6

may be calibrated using four parameters: α,D, ∆ and dω/dr .7

In many cases it is difficult to attain a reliable estimate of8

these parameters (especially of ω′(r)) from the single patch9

dynamics. Thus, the identification of the ADAV mechanism10

should be based either on
∧
a priori disqualification of the other11

mechanisms or on
∧
a posteriori measurement.12

• In particular, ADAV is characterized (a posteriori) by the13

correlation between the amplitude difference r and the phase14

desynchronization θ , which is absent in the other mechanisms.15

Finally, we remark that an additive noise is used here in order16

to model noise proportional to the size of the population, such as17

demographic stochasticity. This procedure may be justified using18

a self-consistency argument: we want to present a mechanism19

that stabilizes the population oscillations, such that the number20

of individuals in, say, the predator population, does not deviate21

strongly from its average value. If this is the case, the O(
√
N) noise22

amplitude does not change somuch along the orbit, and the system23

‘‘feels’’ constant (additive) noise.24

3. Concluding remarks25

Four different mechanisms that induce stability of popula-26

tion oscillations for metapopulations have been presented: a new27

mechanism that relies on the dependence of oscillation frequency28

on their amplitude, spatial heterogeneity, spatio-temporal envi-29

ronmental stochasticity, and Jansen’s mechanism based on the de-30

pendence of the angular velocity on the azimuthal angle.31

It should be noted that the stability mechanisms presented 32

here are applicable not only for the classic predator–prey systems 33

but for any biological system that supports, locally, neutrally 34

stable or unstable oscillations. In particular it may stabilize a 35

‘‘locally’’ unstable ecology of interspecific competition for common 36

resources. Such a system may be described mathematically by the 37

generalized Lotka–Volterra equations (Chesson, 2000); even if the 38

theory predicts extinction, species diversity may bemaintained on 39

spatial domains. 40

In natural systems, in the laboratory, and in simulations, one 41

may encounter population oscillations in the presence of a few 42

of the
∧
above-mentioned factors, simultaneously. The task of the 43

researcher is to make a distinction between them and identify the 44

relevant, or most relevant, stabilizing mechanism. To accomplish 45

this, a combination of the
∧
a priori and the a posteriori hints given 46

above should be utilized. If some of the system parameters (like 47

the dispersal rates, growth rates, or the level of stochasticity) 48

may be subject to manipulation, the identification of the stability 49

mechanism is much easier. 50

While we deal throughout this work only with continuous time 51

systems, it seems that the basic insights presented here are valid 52

also for the non-overlapping generations case. One should note, 53

however, that even without an explicit noise term in the model, 54

the chaotic (separating) features of a discretemap (like theNB one) 55

yield an effective noise with varying strength along the trajectory. 56

This may explain the appearance of stable (or nearly stable) 57

trajectories in the multi-patch,
∧
noise-free, discrete NB dynamics 58

(Adler, 1993). For this type of
∧
map, Hassell et al. (1991) show that 59

∧
non-uniform distribution of population on different patches may 60

stabilize an otherwise unstable dynamics. It seems that the ADAV 61

mechanism is responsible for that stabilization, where the noise 62

here is ‘‘intrinsic’’. We hope to present a more detailed study of 63

this case elsewhere. 64

As pointed out by Jansen and Sigmund (1998), ‘‘all models 65

of ecological communities are approximations: it is pointless to 66
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burden them with too many contingencies and details. On the1

other hand, they would be of little help if they were not robust2

against the kind of perturbation and shocks to which a real3

ecosystem is ceaselessly exposed’’. The current accuracy of data on4

population oscillations and inter-specific interactions, both from5

field studies and from experiments, is, as far as we know, far6

below the level needed for an exact comparison with theoretical7

predictions about the oscillation phase portrait, like those8

predicted by the Lotka–Volterra model and its generalizations.9

Given that, the main insights from the available data are, first, the10

mere existence of these oscillations, and second, the identification11

of the underlying mechanism that limits the amplitude of these12

oscillations in noisy environments. As emphasized by the recent13

experiments, onemay observe persistent oscillations or extinction,14

but it is difficult to compare the exact population dynamic with15

the predictions of the theory. Accordingly, the analysis of data16

on population cycles may be performed, as we have shown here,17

completelywithin the framework of the simple coupled oscillation18

model that allows all the suggested limiting processes within a19

transparent and general modeling scheme.20
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