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The effect of noise on a system of globally coupled chaotic maps is considered. Demographic
stochasticity is studied since it provides both noise and a natural definition for extinction. A two-
step model is presented, where the intra-patch chaotic dynamics is followed by a migration step
with global dispersal. The addition of noise to the already chaotic system is shown to dramatically
change its behavior. The level of migration in which the system attains maximal sustainability
is identified. This determines the optimal way to manipulate a fragmented habitat in order to
conserve endangered species. The quasi-deterministic dynamics that appears in the large N limit
of the stochastic system is analyzed. In the clustering phase the infinite degeneracy of deterministic
solutions emerges from the single steady state of of the stochastic system via a novel mechanism
that involves an almost defective Markov matrix.
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INTRODUCTION

The dynamics of coupled chaotic maps has attracted
a lot of interest in the last two decades, following the
pioneering works of Kaneko [1, 2]. A substantial part
of the study is focused around the paradigmatic model
of globally coupled maps, where many fundamental re-
sults such as mutual synchronization, dynamical cluster-
ing and glassy behavior were demonstrated [3, 4]. The
universal character of the chaotic dynamics makes the
coupled maps model relevant to many phenomena, rang-
ing from neural systems and human body rhythms to
coupled lasers and cryptography [3, 4].

If the coupling between subsystems is diffusive, the
whole system admits an invariant manifold where the
chaotic motion is fully synchronized and all patches are
in the same state at the same time. There are no den-
sity gradients and the diffusive coupling has no role. The
stability of this invariant manifold depends on the rela-
tive strength of the diffusion (that tends to suppress local
fluctuations and so stabilize the coherent state) with re-
spect to the exponential divergence of nearby trajectories
within the chaotic attractor.

A diffusive globally coupled system is thus charac-
terized by these two parameters: the diffusion among
patches and the strength of the chaotic separation (usu-
ally quantified by the Lyapunov exponent of the attrac-
tor) [3, 5]. In the weak diffusion, strong chaotic sepa-
ration regime the coupling among patches is negligible
and any given subsystem moves independently on the
chaotic attractor with almost no correlation between dif-
ferent patches; this is the turbulent phase. In the oppo-
site limit of weak chaos and strong migration the whole
system is fully synchronized as the invariant manifold be-
comes a global attractor. Between these two extremes lies
the clustering phase, where the system segregates sponta-
neously into a few groups of patches with all subsystems
in the same group fully synchronized.

This problem of coupled chaotic maps emerges nat-

urally while considering spatially extended ecologies
(metapopulations) [6]. The population dynamics of a
large, well-mixed system is often modeled by a single
chaotic map like the logistic [7] and the Ricker [8] maps.
If instead of being well-mixed, the population is divided
into a number of sub-populations connected by migra-
tion, one arrives at the coupled map problem. It should
be noted, however, that the numbers of individuals on
each habitat patch are often relatively small. The sys-
tem is thus affected by intrinsic stochasticity associated
with the discreteness of animals; the number of individ-
uals on certain patch is an integer that differs from the
predictions of the deterministic theory. This demographic
stochasticity (shot noise) always exists, even in the ab-
sence of external noise. In particular, the logistic map
and the Ricker map, in their chaotic phases, visit states
for which the population density is arbitrary close to zero.
While the deterministic dynamics predicts a recovery of
the system, the fact that the population is made of in-
dividuals means that very small densities actually corre-
spond to total extinction. The discreteness of individual
agent, thus, plays a double role: it introduces stochastic-
ity into the dynamics and it allows for local and global
extinctions.

A population of discrete agents that obeys these types
of chaotic dynamics is extinction-prone. A sustainable
community appears only due to the rescue effect [9], i.e.,
due to recolonization of empty patches by individuals
that immigrate from other habitat patches. While it is
quite hard to test this conjecture in field studies, many
old [10–12] and recent [13–16] lab experiments suggest
that the well-mixed dynamics of simple ecosystems (sin-
gle species or victim-exploiter systems) are indeed extinc-
tion prone, and that the system acquires stability only
due to its spatial structure, a result supported also by
numerical simulations of many models [17–20]. These
experiments show that the system acquires the state of
maximum sustainability for intermediate levels of migra-
tion. If the diffusion is too weak local extinctions ac-
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cumulate to yield a global one, so the lifetime of the
whole population grows with diffusion. On the other
hand strong diffusion is also harmful as it leads to full
[5] or intermittent [21] synchronization that allows for
correlated extinction.

One of the central practical issues that emerges from
this insight is known as the “conservation corridors”
problem [5, 21, 22]. Trying to protect endangered species
and to reduce the effect of habitat fragmentation, habitat
corridors have been proposed as a means of increasing
movement between patches, thus allowing rescue of lo-
cally extinct colonies. Corridors, however, have become
controversial due to the realization that they can syn-
chronize the dynamics of different patches and expose
the system to the danger of correlated global extinction.
The chance of global extinction is very sensitive to the
total size of the population. Accordingly, the onset of
a drought or a new infectious pathogen poses a much
higher threat to the continued existence of the species, if
the internal dynamics has brought the total population
to a temporal minimum.

The role of a conservation biologist is to design the cor-
ridors so as to ensure optimal sustainability of the whole
system, which obtains when the minimum over time of
the total population is maximal [23]. This task is per-
formed using models that take into account a few basic,
measurable parameters of the system, like the maximum
fecundity r, the carrying capacity N and the rate of dis-
persal ν (see concrete examples in [5, 22]).

The theoretical work done so far in that field assumed
noise-free deterministic dynamics. It was focused on the
conditions under which coherence among patches [5, 21]
may appear, and on the identification of the clustering
phase [24, 25] where attractive orbits of the deterministic
dynamics emerges. Beyond this deterministic approach
lies the assumption that stochasticity induces only small
fluctuations around the deterministic trajectories and, in
particular, affects only weakly the stability of the attrac-
tive orbits. In a recent work [26] it was found that for
small spatial systems the stable manifold is excitable and
allows for long transients once the system is kicked out
its narrow basin of attraction. Here, we examine this ef-
fect in a fully coupled system, showing that reasonable
levels of noise alter substantially the dynamics expected
from the deterministic theory.

The aim of this paper is twofold. First there is a practi-
cal issue: we show how to identify the maximum sustain-
ability point given the basic parameters of the system.
This point appears in the dynamical clustering phase,
where the deterministic theory predicts an infinite set
of stable solutions [3]. It turns out that demographic
stochasticity lifts this degeneracy and so yields a single
dynamical solution for each set of parameters, thus pro-
viding us with an unambiguous criteria for optimal re-
silience against exogenous environmental perturbations.

Our second, more abstract, goal is to explore the

”semideterministic” limit, i.e, to understand how the re-
sults of the deterministic theory are retrieved in the limit
of no stochasticity. The strength of demographic stochas-
ticity is inversely proportional to the square root of the
typical number of individuals N on each patch, and the
noise vanishes in the N →∞ limit. In particular one may
ask how the infinite degeneracy that characterizes the
clustering phase in the deterministic model is retrieved
in the large N limit of the stochastic theory.

Throughout this paper we restrict ourselves to demo-
graphic stochasticity since it allows for a natural defi-
nition of extinction as the ”absorbing state” where the
number of animals is zero and the dynamics halts. The
qualitative results, however, hold for other types of noise
as well.

THE STOCHASTIC-CHAOTIC COUPLED MAP

Let us present first the deterministic dynamics of a
globally coupled chaotic population [1–4]

sit+1 = (1− ν)F (sit) +
ν

L

∑
j 6=i

F (sjt ). (1)

Here, si is the a measure of the population density on
the i-th site and F is the chaotic map. ν is the migration
parameter (the chance of an individual agent to leave its
site) and 1 ≤ i ≤ L, where L is the number of patches.
The paradigmatic model (1) is exact only in the zero
noise limit, e.g., when the population on each patch is
large enough so that the relative fluctuations associated
with demographic stochasticity vanish.

To begin our discussion we specify a stochastic model.
We have, as in the deterministic models, a collection of
L sites, where the local population density si is now re-
placed by an integer ni. The update proceeds in two
steps. First, the reproduction and competition gener-
ate a new value of ni. This value is taken to be drawn
from a Poisson distribution with mean F (ni), where
F (n) is, as before, the chaotic map. In this paper, we
take as our choice of F the well-known Ricker map [8],
F (n) = rne−n/N , with maximum fecundity r = 20 well
in the chaotic regime. (The Ricker dynamics has been
chosen just because it simplifies our numerics; our re-
sults hold for a broad range of different maps, and we
believe that any extinction-prone chaotic map should ex-
hibit similar behavior. In particular, we have verified
that the logistic map (when defined as zero outside the
range 0 ≤ si ≤ 1) yields qualitatively similar results.)
The second step is dispersal, in which with probability
ν, each of the inhabitants of every site can decide to
leave and pick a new site at random. This model is es-
sentially similar to that used by Hamilton and May [27]
to study optimal dispersal rates, except for the chaotic
nature of the on-site reproduction/competition dynamics
of the present model.
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For the sake of concreteness one may think about a
population of butterflies spatially segregated among L
habitat patches, with ni individuals on the ith patch.
Before the cold season each individual deposit r eggs,
but the chance of the caterpillar to survive and become
an adult butterfly is exp(−ni/N) (the chance is much
smaller on crowded habitat patches due to competition).
This is the reproduction-competition step. A fully devel-
oped adult may then leave its natal community (during
the ”migration step”) with probability ν and immigrate
(with equal chance) to any other habitat patch, where it
will deposit its eggs for the next year [28].

We have simulated this system directly using Monte-
Carlo technique for L’s up to 10000. However for the
purpose of analysis, it is more convenient to study, as
do Hamilton and May, the L → ∞ limit. This limit
is completely characterized by a probability distribution
ψtn, the chance of a given site to have n individuals at
time t.

For any habitat patch the stochastic reproduction-
competition step is fully specified by a Markov matrix
Q1, where Q1

mn is the chance of n butterflies that deposit
eggs on that island to produce m adult butterflies in the
next spring. Q1 is the same for all patches and depend
solely on the details of the chaotic map F . The migra-
tion step is described by another Markov matrix Q2, for
which the (k,m) entry is the chance to have k residents
on a patch after the migration step if there were m be-
fore. Clearly this matrix depends not only on the chance
of migration ν but also on the average population per
island before the migration step.

The dynamics described by Eq. (1) may thus be re-
placed by a Master Equation for ψtn, with the Markov
matrix M = Q2Q1. This can be shown to reduce to

ψt+1
n =

∞∑
m=0

ψtme
−µ(m)µ(m)n

n!
=Mnmψ

t
m (2)

where µ(m) = F (m)(1− ν) + νλ is the expected number
of individuals who will occupy a site that started with m
individuals and λ is the mean number of offspring (that
reached adulthood) per site, given by

λ = F (m) =
∞∑
m=0

ψmF (m). (3)

The update rule, which involves multiplying the proba-
bility vector ψ by the transformation matrix M, is, de-
spite appearances, nonlinear, as M depends nonlinearly
on the parameter λ which itself depends on the input
state. The update rule preserves probability, as it must,
since for any given λ it has the Markov property.

TO THE SYNCHRONIZED PHASE VIA PERIOD
DOUBLING CASCADE

To get an overview of the dynamics of our system, we
consider a relatively small N = 5, and integrate the sys-
tem forward in time using the Master equation described
above. Since the state space is in principle infinite, we
truncate all states with more than 10N individuals on a
site. Due to the exponentially falloff of the Ricker map,
this truncation is completely harmless. For very small
ν, we find that the average number of individuals per
site falls exponentially in time, with the percentage of
extinct sites exponentially approaching unity. This is as
expected, since there is a finite probability for an individ-
ual site to go extinct and without sufficient dispersal to
enable recolonization, more and more sites go extinct as
time goes on. The system cannot go completely extinct
because we are simulating the L = ∞ limit. With a fi-
nite number of sites, the system would indeed go extinct.
This is the scenario conservation ecologists are trying to
avoid by constructing corridors and thereby increasing ν.

Increasing ν beyond some critical value, the system
now settles into a unique nontrivial time-independent
state, independent of initial conditions. The average oc-
cupancy increases with increasing ν, until another bifur-
cation is encountered, at which point the system goes
into a period-two state. This state is also independent
of initial conditions. This period-two bifurcation is then
followed at yet larger ν by a period-4 bifurcation. Even-
tually beyond some ν the system exhibits chaotic behav-
ior. This course of events is summarized in the top panel
of Fig. 1.

We start our analysis be considering the constant (pe-
riod 1) solution, which is a solution of the nonlinear equa-
tion

M(λ[ψ])ψ = ψ (4)

Finding a solution is rendered much more tractable by
breaking the equation into two simultaneous equations:

M(λ)ψ = ψ

λ =
∞∑
m=0

ψmF (m). (5)

In the first of the these equations, λ is an arbitrary pa-
rameter, which has to satisfy the auxiliary second equa-
tion. Solving the first of these two equations is straight-
forward, as it is now linear. For any given value of λ,
the matrix M(λ) admits, due to the Markov property,
a unique invariant eigenvector ψ∗ = ψ∗(λ) (i.e., a right
eigenvector with eigenvalue unity). However, for general
λ, the second equation is violated. We can define a “mis-
match function”

g(λ) ≡ λ−
∞∑
m=0

[ψ∗(λ)]mF (m) (6)
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It is now a simple matter to scan in λ and locate the
zero crossings of g. In general there are two such zeros,
one at λ = 0, in which case (ψ∗)m = δm,0 as well as
one at positive λ. However, for small enough ν, the first
of these, which represents the absorbing state, is in fact
the only period-one solution. This is consistent with the
simulation above, where the system for small ν converged
exponentially to the absorbing state. The range of ν’s
for which the only stationary state is the absorbing state
decreases rapidly with N , since local extinctions become
rarer at large N .

Above the critical ν, as noted above, a second, non-
trivial period-one solution emerges. The figure shows the
average occupancy n(ν), which rises from zero at the crit-
ical ν, reaches a maximum and then slightly decreases for
larger ν. A sample distribution for this period-one solu-
tion is shown in Fig. 2, and is characterized by having
two peaks, each having half the probability. The system
thus decomposes into two clusters that oscillate 180◦ out
of phase with respect to the other. Since the two clusters
have equal weight, the overall occupancy of the system
is time-independent.

The period-one solution was seen in simulation to
go unstable at the point of maximal occupancy, bifur-
cating to a period-two solution. These period-2 solu-
tions may be constructed using a similar strategy as
that described above for the period one solution. Pick-
ing arbitrary values for λ1 and λ2 the Markov ma-
trix M(λ2)M(λ1) must admit an invariant eigenvector
(ψ∗)m. The solution is consistent iff the system satis-
fies the two auxiliary conditions λ1 =

∑
(ψ∗)mF (m) and

λ2 =
∑

[M(λ1)(ψ∗)]n F (n). Extending this procedure
one may find orbits of higher periodicity by searching
through the space of quartets and octets of λ’s with the
appropriate auxiliary conditions.

This succession of bifurcations presumably recapitu-
lates the standard period-doubling route to chaos. One
can prove in fact that the system is indeed chaotic as
ν → 1. As pointed out by Durrett and Levin [17], in
that case the occupation of a site just before the reaction
step is a Poisson distribution with a mean given by the
total population in the last step. As a result, n satisfies
the iterative map,

nt+1 =
∑
k

kF (k)e−nt
(nt)k

k!
(7)

where F is the deterministic map. In the Ricker case
the resulting map for n is also unimodal and the result-
ing transformation is chaotic in the regime of parameters
considered here. This also implies that any periodic orbit
must lose its stability as ν approaches unity.

The general scheme that emerges for strong stochas-
ticity from the upper panel of Fig. 1 and from Fig. 2
should be compared with the results of the determinis-
tic theory based on Eq. (1). The deterministic system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ν

0

1

2

3

4

5

6

7

n 
/ N

Period 1
Period 2
Period 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ν

0

1×108

2×108

3×108

4×108

5×108

M
ea

n 
Li

fe
tim

e

FIG. 1: Upper: Solution branches for N = 5, showing the
period 1, 2 and 4 branches as a function of ν. Lower: Mean
lifetime of a system of fives sites as a function of ν for N =
5. As explained in the main text, maximal sustainability is
achieved on the edge of the first bifurcation.
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FIG. 2: Probability Distributions ψn for the period 1 solution
at ν = 0.2 and for the two phases of the period 2 solution at
ν = 0.25. The points are connected to guide the eye.
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admits a synchronized chaotic phase at large ν, a turbu-
lent phase at small ν and a clustering phase in between.
In its broad outlines, this structure is preserved in the
stochastic theory. At large ν in both theories the av-
erage occupancy of the system behaves chaotically. At
intermediate ν, the system in both cases exhibits small
period oscillations characteristic of clustering. However,
there are major differences between the two cases.

1. In the clustering phase, there are many stable at-
tractors in the deterministic case, and the particu-
lar attractor the system chooses is a function of the
initial conditions. With strong stochasticity (small
carrying capacity N) we find that the infinite de-
generacy of the deterministic clustering phase has
been eliminated; there is only one stable solution
for a given ν.

2. The broad distributions shown in Fig. 2 replace the
delta peaks of of the deterministic theory [3].

3. The transition to chaos through a cascade of
period-doubling bifurcations is also absent in the
deterministic system.

4. Both theories exhibit a phase with constant aver-
age occupancy at smaller ν. However, the nature of
this phase differs between the two cases. In the de-
terministic theory, the constant output of the entire
system is the result of a complete lack of coordina-
tion between the behavior at different sites. In the
stochastic theory, at least close to the onset of the
period-2 solution, the behavior is more aptly char-
acterized as a symmetric two-cluster phase. Such
symmetric solutions are also present in the deter-
ministic system, but have to compete with the
much more numerous asymmetric two-cluster so-
lutions, with their period-2 behavior.

5. At smaller ν in the deterministic system there
is a sharp transition to completely unsynchro-
nized (turbulent) behavior, whereas in the strongly
stochastic system there is a smooth widening of the
occupancy distribution. Also, here the correlation
time of the spatial pattern decreases continuously
until the extinction transition.

6. Clearly the extinction phase is a consequence of tur-
bulence. However, the transition from the turbu-
lent phase to the cluster phase in the deterministic
system occurs at much higher ν than the extinc-
tion transition for the stochastic system (which is
exponentially small in N , and quite small even for
N = 5).

MAXIMAL SUSTAINABILITY

Returning to the practical problem of conservation cor-
ridors, what the ecologist really wants is to identify the
maximum sustainability point, i.e., under what condi-
tions the average time to extinction of the endangered
species will be maximal. Our results suggest a simple an-
swer: the conservative engineer should try to construct
the corridors such that ν corresponds to the edge of
the bifurcation from period one to period two. At this
point the system supports the highest constant popula-
tion. Above this value there are low-population periods
(years, seasons) in which the chance of correlated extinc-
tion due to global catastrophe is much higher. We can
see this directly by looking at a small L, small N system,
which is in any case the most relevant in the ecological
context [5, 21]. Even in the presence of an attractive
manifold such a small system will sooner or later go ex-
tinct as a result of demographic fluctuations.

We have used Monte-Carlo simulation to measure the
mean time to extinction as a function of ν; results are
shown in the lower panel of Fig. 1. There is a sharp
peak right where we expect, just before the bifurcation
to the period-2 solution. This feature is even more pro-
nounced in the presence of environmental noise, but the
exact results are of course sensitive to the strength of the
noise and the exact form of the coupling of the noise to
the dynamics.

THE DETERMINISTIC (LARGE N) LIMIT

As in other fields of science, from quantum-classical
correspondence to the theory of reaction kinetics, the de-
terministic description of a system should be understood
as the limit in which the underlying stochastic fluctua-
tions may be neglected. For the system considered here
this corresponds to the N → ∞ limit. In this limit the
extinction region shrinks to zero, there is a sharp dis-
tinction between the turbulent and the clustering phase,
and the clustering phase itself exhibits degeneracy, i.e.,
many solutions exist for the same set of parameters [3].
Our numerics is limited by the size of the Markov ma-
trices and currently we can find solutions for N up to
80 (beyond that we must use the MC technique). The
nature of the large N limit has to be analyzed separately
in the various phases of the deterministic theory. Here
we wish to discuss in detail just the behavior in the clus-
tering phase, where the restoration of degeneracy occurs
in a novel fashion; namely, by the appearance of a near
degeneracy (defectiveness) of the Markov matrix.
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The clustering phase

To begin our numerical investigation, let us start to
increase N . For N = 10 (results not shown) the bifurca-
tion from period 1 to period 2 is backward (subcritical),
while the bifurcation from period 2 to period 4 is still
forward even at N = 20. The location of the bifurcation
from period 1 to 2 is almost independent of N , but the
bifurcation from 2 to 4 is strongly N dependent, moving
to smaller ν as N increases. In fact, by N = 40 it has
already moved to the backward branch of the period 2
solution. This situation is presented in the upper panel
of Fig. , where the period 1, 2 and 4 solution branches
are traced out for N = 60.

The most important issue here is how the determin-
istic continuum of period two solutions is recovered as
N grows to infinity. As explained above, the period
2 solutions are identified by searching for all pairs of
λ1, λ2 that admit an invariant eigenvector ψ such that
λ1 =

∑
ψnF (n), and λ2 =

∑
F (n) [M(λ1)ψ]n. It turns

out that, for large N , there is a range of λ1, λ2 for which
the Markov matrix M21 ≡ M(λ2)M(λ1) admits, in ad-
dition to its invariant eigenvector, an eigenstate ψ̃ with
an eigenvalue very close to 1, say, 1 − ε. Thus, up to
a small term (for N = 80, e.g., ε = 10−12) any linear
combination of the first and the second eigenvectors im-
itates the real invariant state until t ∼ 1/ε. Within this
time horizon one has, effectively, a continuous family of
invariant eigenvectors of M21, αψ + (1 − α)ψ̃. The two
auxiliary conditions no longer are sufficient to determine
a solution. We call these solutions for which we ignore ε
a quasi-solution, of which there exists a continuous fam-
ily depending on α. It turns out that ε decreases sharply
with increasing N ; the deterministic limit emerges from
this continuous family of solutions as explained below.

In Fig. 4, we see all this exemplified in a simulation,
where we plotted nt as a function of t, for N = 60,
ν = 0.21. We see that for times less than roughly 5 · 105,
the system exhibits an essentially period 2 type behavior,
with an extremely slow drift of the two states. Suddenly,
beyond this point, the system converts to a period 4 be-
havior. A good way of analyzing the drift is to plot n2t+1

vs. n2t, as seen in Fig. (lower panel). If the system had
a true period 2 orbit, this graph would show a single
point. Instead, the drift converts this into a curve. The
points on this curve coincide precisely with the above de-
scribed quasi-solutions, a number of which are indicated
by circles. The true solutions are represented by triangles
(period 2) and a diamond (period 1) in the figure. The
system drifts to larger amplitude oscillations, until the
instability is encountered and it goes to a period 4 orbit,
represented by two dots in the figure. While there are
quasi-solutions (as well as a true solution α = 0) beyond
this point, they are not dynamically relevant due to their
strong instability.
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FIG. 3: Upper: Solution branches forN = 60, showing the pe-
riod 1, 2 and 4 branches as a function of ν. Lower: The return
map n2t+1 versus n2t, indicated by black dots, for N = 60,
ν = 0.21, taken from the simulation depicted in Fig. 4. The
trajectory - a drift away from the green triangle, up to the
point it splits to the period 4 orbit - is determined by the
line of quasi solutions indicated by the red circles. The tri-
angles represent true period 2 solutions for which α = 0, and
the period 1 solution is indicated by a red diamond. The
inset is a blowup of the relevant section of the upper panel,
indicating the true solutions and the slow flow through the
quasi-solutions. The solutions for ν = 0.21 are marked by the
same symbols as in the main figure. For these parameters the
dynamics close to the green triangle is so slow that measur-
ing the dynamics becomes impractical. When N → ∞, all
the region between the green triangle and the splitting point
(indicated by full green line in the inset) becomes marginally
stable.

The turbulent phase

The above picture of the large N limit of the cluster-
ing phase is very different than that which obtains for
small ν, where the deterministic theory is in the tur-
bulent phase. This aspect of the problem has been al-
ready considered by Shibata, Chawanya and Kaneko [29].
These authors studied numerically the system described
by Eq. (1) with the logistic map and additive noise. [as
explained above there is no essential difference between
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FIG. 4: The average population nt versus t for N = 60,
ν = 0.21. Data obtained by direct integration of the Mas-
ter equation, Eq. (2).

demographic stochasticity and other types of noise, in-
cluding additive noise, as long as the system is far from
the extinction state]. They restricted themselves to very
small noise, so that the system would not blow up (which
happens if the logistic map is not defined as zero for ar-
guments outside the range 0 to 1). They discovered that
for these very small noises the system is governed by a
relatively low-dimensional attractor. They further found
that the dimensionality of this attractor increases as the
noise gets smaller, and in this way the turbulent phase
is recovered. We were able to reproduce the results of
[29] in our demographic stochasticity system using the
MC technique with N = 106 and above. For smaller N ,
i.e,. larger noise, the system is in the period-one state we
have described above.

While more work is needed to fully characterize the
transition to turbulence, the evidence so far suggests the
following scenario: As N increases the period 1 solution
at small ν undergoes a Hopf-like bifurcation to some low-
dimensional chaotic attractor and then the dimensional-
ity of this attractor increases with N to yield turbulence.
The critical N for this bifurcation appears to be very
sensitive to ν, and in particular grows dramatically as ν
decreases.

The synchronized phase

More work is also necessary to fully characterize the
large-N behavior of the synchronized phase. In particu-
lar, the deterministic system is known to exhibit inter-
mittency when ν is slightly below the transition to syn-
chronous behavior [21]. It is interesting to consider how
this tendency to intermittency manifests itself for large
finite N . Preliminary work indicates that the variance of

the occupancy exhibits sharp bursts in this regime, but
the details have yet to be worked out.

In summary, then, we have seen that adding demo-
graphic noise to a globally coupled chaotic map has a
marked effect on the dynamics, leading in fact to very reg-
ular dynamics for intermediate coupling strength. The
stochastic system supports a well defined stable orbit
in the clustering phase, this allows one to identify the
point of maximum sustainability. As the noise strength
is reduced, the clustering phase exhibits an exponentially
long time scale, which effectively gives rise to the contin-
uous family of solutions seen in the no-noise limit.
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