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A new technique for the modeling of perennial vegetation patchiness in the arid/semiarid climatic zone

is suggested. Incorporating the stochasticity that affects life history of seedlings and the deterministic

dynamics of soil moisture and biomass, this model is flexible enough to yield qualitatively different

forms of spatial organization. In the facilitation-dominated regime, scale free distribution of patch sizes

is observed, in correspondence with recent field studies. In the competition controlled case, on the other

hand, power-law statistics is valid up to a cutoff, and an intrinsic length scale appears.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The tension between competition and facilitation is known to
be a major factor in determining inter- and intra-specific dynamic
and life history characteristics for many species (Lambin et al.,
2001; Berkowitz et al., 1995). In spatially segregated populations,
these two effects contradict each other; while kin competition for
a common resource favors high dispersal rates as an evolutionary
stable strategy (Hamilton and May, 1977), kin facilitation tends to
lead to spatial clustering (Jason et al., 2000).

In the semiarid climatic zone, shrubs, trees and annuals
compete for water, which is considered the only growth-limiting
resource. On the other hand, there is a positive feedback
associated with the biomass, as its existence may reduce
inorganic losses (decreasing evaporation and increasing infiltra-
tion). The interference between plants may thus yield either
positive (facilitation) or negative (competition) effects (Holzapfel
and Mahall, 1999). This paper deals with the interplay between
intraspecific facilitation and competition for perennial flora in the
semiarid climatic zone.

Two main approaches are employed in order to model the
balance between these opposing tendencies. The first approach is
based on deterministic, time-continuous partial differential
equations, where both water density (soil moisture) and biomass
density are considered as real, continuous variables (Wilson and
ll rights reserved.

erb).
Agnew, 1992; Lefever and Lejeune, 1997; Klausmeier, 1999; von
Hardenberg et al., 2001; Solé and Bascompte, 2006). Such models
may support either homogenous or patchy solutions, where the
resulting vegetation patterns are either regular (if Turing-like
bifurcation takes place) or irregular (technically, this may happen
when the bifurcation is subcritical). These models, however, fail to
capture certain important features, such as the distribution of
patch sizes; the typical size of a patch is dictated by either the
model parameters (in the Turing case) or the initial conditions
(for subcritical bifurcation, where two metastable solutions may
exist simultaneously in the system, and the domains structure
depends on system’s history). For a recent review of this approach
see Rietkerk and van de Koppel (2008).

Recently, two groups of researchers published compelling
analyses of satellite image data (Scanlon et al., 2007; Kéfi et al.,
2007), suggesting that patch sizes in the semiarid zone obey, at
least in some parameter regions studied, power-law distributions.
In order to account for that phenomenon, both groups suggested a
new type of modeling for vegetation patterns. The new models are
stochastic and individual based, resembling Kawasaki spin
exchange models (Kawasaki, 1972). On a lattice, each vertex is
either occupied or unoccupied, the number of occupied patches is
conserved (this is the manifestation of the competition for a
limited resource), and the chance of an old shrub to die, or of a
new shrub to sprout, is proportional to the population in its
vicinity, such that positive feedback is taken into account. The
resulting cluster dynamics resemble very much the ‘‘rich get
richer’’ dynamics underlying the appearance of a scale free
network (Barabási et al., 1999); the chance of a large cluster to
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grow is larger than that of a small cluster. The distribution of
cluster sizes becomes wide, and may obey a power-law in some
cases.

Clearly, a disadvantage of the new type of stochastic models is
that they neglect the water dynamic, and hence do not support a
realistic, local competition term. Competition enters into the
model only as a global constraint on the biomass density, as if all
the biomass units ‘‘share’’ the same water resource.

In the following section, we suggest a hybrid model that
incorporates the deterministic equations of both water and
biomass with some stochastic elements. It turns out that our
model may produce both ordered and disordered patterns and
admits a parameter region where the cluster statistics obey
power-law. Our model, thus, may produce all the observed
patterns, both regular and irregular, from a simple, first principle
simulation technique.
2. The model

We begin with the simplest set of partial differential equations
that describe the deterministic dynamics of plants competing for
water. The two basic ingredients are the biomass density b and the
water density w. On a two-dimensional grid, the rate equations
take the nondimensionalized form:

d

dt
bi;j ¼ bi;jðwi;j � mÞ, (1)

d

dt
wi;j ¼ R�wi;j �wi;jbi;j � Dw wi;j �

X
d¼�1

½wi;jþd þwiþd;j�

 !
, (2)

where i; j is the site index. The first and the second equations
stand for the deterministic dynamics of the biomass density b, and
the soil water density w, correspondingly. The difference ðw� mÞ is
the local growth rate of the biomass, reflecting the dependence of
growth on the consumption of water. The term �w stands for
abiotic losses of water (evaporation, percolation) while the �wb

term reflects losses due to plant usage. Dw is the ‘‘diffusion’’ term
for the water, corresponding to the lateral water flow. Note that if
a preferred direction exists, like in the case of a downhill flow, a
bias term should be added to the model. Here, however, our main
focus is on the comparison with the models used by Scanlon et al.
(2007) and Kéfi et al. (2007), where this effect was not taken into
account.

For any initial conditions, if the water deposition rate R is fixed,
the dynamics induced by Eq. (2) lead to an fi; jg independent,
homogenous solution, where bi;j ¼ b̄ ¼ ðR=mÞ � 1 and wi;j ¼ w̄ ¼ m.
In order to observe patterns, we follow Shnerb et al. (2003) and
consider a two-season scenario, where a wet season (for which
R ¼ R0) is followed by a dry season (for which R ¼ 0). The duration
of each season is t. As perennial shrubs always have a threshold
size, small shrubs are eliminated from the lattice at the end of the
dry season (see, e.g., Padilla and Pugnaire, 2007). Note that the
only effect of seasonality is to introduce a threshold on the size of
a biomass unit; without that the continuum description holds, as
one may expect for annual flora. This process is stochastic and the
elimination happens with probability Pd1:

Pd1ðbÞ ¼

1 bob0;

exp �
b� b0

b0

� �
b4b0:

8><
>: (3)

What (3) accounts for is the elimination of new seedlings that did
not grow enough and fail to survive the dry season. The model
should include a process of that type in order to explain the
robustness of the emerging patterns; without that threshold,
disordered patterns are unstable (Shnerb et al., 2003).
In order to incorporate a positive feedback mechanism into the
model, we have introduced another stochastic, biomass indepen-
dent mortality term. Each shrub, independent on its biomass, is
removed with probability Pd2, which is a monotonically decreas-
ing function of the surrounding biomass. For the simulations we
have used

Pd2 ¼ kð1� rÞ; r ¼ A
X

jr�r0 jor0

bðr0Þ

jr� r0j
, (4)

where A is a normalization constant, r ¼ fi; jg and r0 the maximal
facilitation range. The more populated is the immediate vicinity of
a biomass unit, the bigger are its chances to survive.

Whenever a plant is removed, it may be replaced by a seed of
random small size with a probability that depends, again, on its
neighboring biomass, Ps ¼ rZ, 1oZo2. This models the fact that
the chance of a successful germination rises in the vicinity of
other shrubs.

Biomass units with good starting values manage to survive
through their first summer. These plants grow, and consume
water from within their vicinity. After a few cycles, water level in
bare zones is no longer sufficient for new plants to survive the dry
season. The process forms a mosaic of water-consuming areas,
which are populated by vegetation, and bare water-contributing
areas, which cannot support a new growth.
3. Patch size distribution, patterns and correlations

Recent reports (Scanlon et al., 2007; Kéfi et al., 2007) have
demonstrated power-law statistics of the patch size for vegetation
ecosystems in the arid and semi-arid climatic zone across a wide
range along the annual rainfall gradient. As pointed out in Scanlon
et al. (2007) and Kéfi et al. (2007), this phenomenon is actually
puzzling.

Typically, the distribution of sizes in nature (the height of
different individuals within a single species is a classical example)
tends to be Gaussian; its average is dictated by physical and
biological constraints (e.g., the ability of the muscles to support
the body) and the deviations from the average are attributed to
many ‘‘small’’ random effects, like the genetic mixture of an
individual and resource availability during its development. The
central limit theorem assures that, in such a case, the results are
normally distributed around their mean, and large fluctuations (in
units of the standard deviation) are exponentially rare. Power-law,
or otherwise fat-tailed distributions, are an exception of this
scenario, and when such a distribution appears one should look
for a mechanism that invalidates that simple logic.

Indeed some natural systems, both at equilibrium and out of
equilibrium, show power-law statistics of domains. This usually
occurs close to a second order phase transition, when the
correlation length x diverges and the system lacks an internal
length scale. Slightly off criticality, the system still imitates its
critical behavior up to the correlation length x that diverges at the
transition; this implies that for any finite length scale one may
find a range of parameters within which the system is almost
critical. power-law statistics for a wide range of parameters, on
the other hand, may occur when the system shows self-organized
criticality (Bak et al., 1987); the Gutenberg-Richter law for
earthquake statistics is believed to be an example of this
phenomenon.

Another mechanism that yields power-laws and other fat-
tailed distributions is multiplicative noise. This situation occurs
when the random fluctuations that affect the system are
proportional in magnitude to the size of the system itself. An
example is the neutral theory of species abundance (Hubbell,
2001); if the chances of any individual to produce an offspring and



ARTICLE IN PRESS

A. Manor, N.M. Shnerb / Journal of Theoretical Biology 253 (2008) 838–842840
to die are the same, the abundance fluctuates along generations
and the size of the fluctuation is proportional to the population.
This ‘‘law of proportion effect’’ was first discovered in the context
of business firm’s size (Gibrat, 1930; Simon and Bonini, 1958; Levy
and Solomon, 1996) and is also relevant to the effect of small
fluctuations in growing populations, like surname abundance
(Manrubia et al., 2003) and degree distribution in scale free
networks (Barabási et al., 1999).

We do not intend to solve the power-law mystery here;
instead, let us show that our hybrid model may actually support
the same behavior. Fig. 1 shows the spatial biomass distribution
attained from our model (using forward Euler integration of the
reaction–diffusion equations superimposed on the stochastic
dynamics) for three different regimes of annual precipitation.
Fig. 1. Spatial coverage emerges from the model described above for different values of

cluster area (left). The simulations used a 400� 400 lattice, for 200 wet-dry (‘‘yearly’’)

seeds. The only difference between panels is the value of R in the simulation, taken a

coverage is f ¼ 0:04 in the ‘‘arid’’ (or overgrazed) zone, f ¼ 0:1 for the ‘‘semi arid’’ region

Dw ¼ 10; b0 ¼ 0:1; r0 ¼ 10; Z ¼ 1:5; m ¼ 0:2 and k ¼ 0:07.
Note that while the stochastic models presented by Scanlon et al.
(2007) and Kéfi et al. (2007) imposed a global constraint on the
spatial coverage (related to either annual rainfall or grazing
stress), here this parameter emerges as a result of different values
of annual rainfall. The left panels of Fig. 1 show the cumulative
distribution function for the cluster sizes, PðSXaÞ, defined as the
probability for a vegetation patch to have an area equal to or
greater than a. For all precipitation values, a power-law PðSXaÞ ¼

Ca�b seems to fit the results.
Our model allows one to examine various regimes of growth

parameters, and in particular to trace the crossover from
facilitation-dominated to competition-dominated dynamics. The
control parameter is the rate of water diffusion, Dw. When Dw

approaches either zero or infinity, there is no length scale
precipitation (three right panes) and the corresponding cumulative distributions of

cycles. The initial condition for all simulations is a 30% coverage of random small

s R ¼ 3:5 (up), R ¼ 3:515 (middle), and R ¼ 3:525 (down). The fractional biomass

and f ¼ 0:19 in the last panel. Common parameters used for both simulations are
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Fig. 2. Spatial patterns (left) and the corresponding patch size distribution (right) for three different runs of the simulation, identical except for the value taken for water

diffusivity. The upper panel ðDw ¼ 10Þ shows the scale free spatial pattern (right), manifested by the power-law statistics of patch sizes (left). In the middle and lower panels

(Dw ¼ 50 and 100 correspondingly), the formation of an intrinsic length scale—the competition length—is manifested. As Dw increases, the cluster size probability

distribution function, PS, reveals a power-law regime for small patch sizes, and a characteristic length scale (the right peak) for large cluster sizes. Simulations were

conducted with R ¼ 3:523 for 300 yearly cycles. Other parameters and initial conditions are identical with Fig. 1.
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associated with the competition for water. In this parameter
regime the dominant clustering process is the positive feedback;
clearly, mutual facilitation leads to a ‘‘rich get richer’’ dynamic
that results in scale free spatial distributions (Barabási et al.,
1999). On the other hand, for intermediate values of water
diffusivities the competition length determines a length scale for
the system. This transition is demonstrated in Fig. 2, where the
same model that yields the spatial patterns shown in Fig. 1
produces, with larger water diffusivities, qualitatively different
patterns. Here one can easily track the emergence of a new length
scale associated with the competition for water, and the formation
of ordered, Turing like, structures that resemble Niger’s ‘‘tiger
bush’’ (Wilson and Agnew, 1992; Lefever and Lejeune, 1997;
Klausmeier, 1999; von Hardenberg et al., 2001; Solé and
Bascompte, 2006). The system is now characterized by a power
law distribution of small cluster sizes up to some cutoff size, while
the large clusters admit an intrinsic length scale.

The transition from facilitation-dominated to competition-
dominated dynamics is best identified by the correlation function,
as seen in Fig. 3. While a facilitation-dominated regime is
characterized by positive, short range correlations, the competi-
tion dynamics lead to long range, negative correlations. As the
competition range Dw increases, short range correlations start to
form.
4. Discussion

Ecological processes are generally complex, and their modeling
is a difficult task. Many of the models (and perhaps the most
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Fig. 3. The spatial autocorrelation (biomass–biomass) function for the three

patterns of Fig. 2. The occupation of each site, xðrÞ � xi;j is either zero (if the

biomass is below threshold) or one. For any fixed distance r0 the correlation

function is defined as Cov½xðrÞ; xðrþ r0Þ� normalized by the standard deviation and

averaged over all pairs of sites of mutual distance jr0j. The transition from

facilitation-dominated to competition-dominated regime manifests itself in the

appearance of negative correlations for large Dw . This implies that the plot is

segregated into water contributing and water accepting areas. The short range

autocorrelation is positive for all values of Dw , as a result of mutual facilitation.

Clearly, the overall correlations grow stronger as Dw is increased. Clearly, the

water–biomass correlations (not shown) are negative, with water-rich area in the

gaps between shrubs.
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useful of them) are greatly oversimplified, neglecting the realistic
complexities in order to clarify a simple effect. Other models
attempt to imitate reality using many parameters; their applic-
ability depends on the availability of good estimates for the actual
values of these parameters.

The model presented here lays roughly between these two
extremes. It utilizes many parameters to describe the water
dynamics, shrub growth, facilitation and so on; we are not
familiar with a realistic estimate for many of these parameters.
Yet, the model yields patterns that are extremely similar to those
observed in nature. Moreover, it leads to a very intuitive under-
standing of the basic processes underlying vegetation dynamics.
The observed patterns are attributed to the interplay between two
opposing tendencies: facilitation supports scale free clustering
and ‘‘rich get richer’’ dynamics, while competition supports
ordered patterns characterized by a single scale. Solving Eq. (2)
for the spatial water profile between two different boundaries,
one finds that the competition length scales like

ffiffiffiffiffiffiffi
Dw

p
. The

crossover between the two behaviors, as demonstrated in Fig. 2,
occurs when the facilitation range is of order of the competition
length. This observation may be used in order to classify the
reasons for deviations from the power-law behavior for the sizes
of vegetation patches. One may use, for example, the spatio-
temporal correlations in order to study the role of spatial
heterogeneity (microtopography), or to identify allelopathic
negative interactions by the appearance of a new length scale.
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