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We study the fluctuations in the correlation exponent obtained for correlated and noncorrelated
sequences by mapping them into a one-dimensional random-walk model. We investigate, both nu-
merically and analytically, the widely used technique of averaging over overlapping samples. An
explicit quantitative measure for the reduction of the sample-to-sample fluctuations in the exponent
due to this process is given, and the limits for which the results obtained are reliable are discussed.
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I. INTRODUCTION

Recently, it was suggested that the existence of
long-range correlations in one-dimensional strings can
be checked by mapping them into a one-dimensional
random-walk (RW) model, and studying the fluctuations
of such walks [1-3]. This method has the advantage
over the traditional power spectrum or direct calcula-
tions of the string correlation in that it yields high qual-
ity scaling data. Generally, this method can be applied
to any source of information, e.g., DNA data, texts, mu-
sic scores, pictures, etc. The usual averaging techniques
involve the partition of the sequence to be analyzed into
many, equal length, parts, and averaging the results over
them. The exponent characterizing the power-law decay
of the correlations is well defined for infinite sequences;
however, in most practical cases the accuracy of the anal-
ysis is limited by the length of the relevant available se-
quence, e.g., the length of the text or the nucleotide chain
in the DNA, which is typically of order 10° — 10%. Hence,
in order to get a good average over long enough samples,
it is usual to consider overlapping samples. It is therefore
of importance to investigate the effect of such a procedure
on the exponent calculated. Recently, Peng et al. [3] have
used scaling arguments to estimate the accuracy of the
exponent obtained through this method, and suggested
that the error in the exponent scales as the number of
the nonoverlapping samples. The purpose of this work is
to calculate the exact effect of the overlapping samples
procedure on the accuracy of the exponent and to show
that this averaging procedure has only a limited effect on
the reduction of the sample-to-sample fluctuations of the
relevant exponent. We suggest a quantitative expression
for the region in which this method is reliable.

II. DESCRIPTION OF THE GENERAL METHOD

Once a code is chosen, any given string of data is
mapped into a sequence of numbers u(z), the codifica-
tion of the ith character. Following Peng et al. [1] we
interpret these numbers as steps of a (one dimensional)
RW. Define, then, the RW position f(l) after ! steps as

FO) = u(), (1)

i=1
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and the difference d; over a distance [ by

di = f(lo+1) = f(l). (2)
The mean square fluctuation of d; is then
C(l) = (df) — (&), 3)

where the average is taken over different /5. C(l) is ex-
pected, in the limit of long-range correlations, to have
the scaling form C(l) ~ [2*, where a is the exponent
describing the power-law decay of the correlations.

As has been emphasized by Peng et al. [1], we have

l l

C) =Y (u(i)u()- (4)

=1 j=1

One therefore sees that this method involves averaging
over many correlation functions, and hence it is more reli-
able than direct calculations. The value 1/2 for a implies
that the correlation function decays exponentially, i.e.,
the text is not correlated after some typical length. On
the other hand, & = 1 corresponds to the scale-invariant
1/f noise, also called the maximal complexity limit [4].
Usually, it is common to average over all possible values
of lp in order to get the maximal number of samples.
The question of the reliability of this method was raised
recently by Peng et al. [3], who have applied a theoretical
argument to derive a scaling relation for A« as a function
of the sequence length N and the sample length I, namely,

Aa(l,N) ~ (%)1/2. (5)

In this work we give an explicit measure to the sample-
to-sample fluctuations in C(!) in terms of I, N, p, and S,
where p is a parameter which describes the amount of
overlap, and 3 is determined by the distribution function
of each elementary segment. We find that this expression
indeed has the scaling form of Eq. (5), with a prefactor
which depends solely on p and 8. This prefactor is a
bounded function of the degree of overlap, and thus even
in the limit of maximal overlapping samples the resulting
reduction of the sample-to-sample fluctuations leads to
reliable results only in a limited region.
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FIG. 1. C(l) as a function
of I, for ten different samples
of 1200000 random =1 bits,
where the sample size is 80 000
and the average is taken over
overlapping samples.
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III. FLUCTUATIONS IN THE EXPONENT —
NUMERICAL EVIDENCE

In order to investigate the limits in which the use
of overlapping samples is helpful, we have applied this
method to sequences of noncorrelated random numbers.
We have generated ten different sequences of 1.2 x 108
random =+1 bits and then partitioned them into 1000
overlapping samples of length 80000. The results are
presented in Fig. 1. It is evident that the accuracy of the
measurement of a, which is proportional to the slope
of the curves presented in this figure, is very low for
large I. However, the curves obtained by this method
are smoother than the curves obtained by performing the
average with nonoverlapping samples only (Fig. 2). This
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effect of the overlapping technique, namely the smooth-
ness of the curve, has nothing to do with the reliability
of the measurement of «, as implied by Fig. 1.

IV. ANALYTICAL APPROACH

Let us investigate a simple model for comparing the
averaging over overlapping and nonoverlapping samples.
In our model we consider a finite sequence of N non-
correlated random numbers u(j), and test the correla-
tions of samples of length [ (we assume N to be an in-
teger multiple of ). We then partition the sequence into
S = % segments, and define

C(l)

FIG. 2. C(l) as a function
of I, for two different samples
of 1200000 random =1 bits,
where the sample size is 80 000
and the average is taken over
nonoverlapping samples only.
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il/2

T, = Z

j:(i—l)l/2+1

u(j), (6)

where 1 < i < S. When u(j) are symmetric random vari-
ables, i.e., (u(j)) = 0, so are the variables r;. Consider
now the averaging process in which the samples taken
consist of the S/2 segments i,7 + 1 where 1 < 7 < S
and i is odd, and therefore do not overlap. We compare
the fluctuations of the correlation function C(I) obtained
by this process (denoted as case 1) with the results of
the second option where the samples taken consist of the
S — 1 segments 2,7 + 1 where 1 <7 < § — 1 without any
J

RAPID COMMUNICATIONS

R1007

other constraints (case 2).
The statistical estimate of (d;) and (d?) is given, for
the first (nonoverlapping samples) method by

2 5-1 2 S—1
D= g’z ritrip, D2= 5.2 (ri +71it1)?,
1 even 1 even (7)

respectively. The correlation function C is then esti-
mated statistically by ¢ = D, — D?, and its variance is
given by Ac? = (c?) — (c)?, where () refers to averaging
with respect to the probability distribution. For exam-
ple, the average of the correlation function c is given by

S—-1 2 S-1
2 2
(c) = <—§ E T2 4+ 2riri + 7‘1-2_}_1 - (§> E Tt + i1 + iy + 7‘,‘+11'j+1>. (8)

i even %,j even

Using the fact that (r;) = 0 and defining the quantity
02 = (r?), one can express (c) in terms of S and o; under
the assumption that there are no correlations in the orig-
inal sequence, the only contributions for c¢ arise from the
terms proportional to even powers of r. For the nonover-
lapping method it is then evident that the two terms

S—1
E TiTi41 + Ti41T;

1,j even

do not contribute to the average since i,j are even but
i+ 1,7 + 1 are odd, hence they cannot coincide. With
this, the result is

(c) = 202(1 - %) (9)

The same process of calculation for these quantities holds
for case 2 with two differences; one must replace any
occurrence of % by 37 (the inverse of the number of
samples), and there are contributions to the average from
the two terms which vanish in case 1. With this,

(Coverlap) = 207 (1 - S—Z—) (10)

In order to measure the fluctuations of the correlation
function in terms of the moments of r, one should take
the average of Ac? with the above rules. To the leading
order in é, the results are

ACZ 1 S 04
nonoverlap __
- = 5_1(1+<74—)). (11)

overlap

One sees that the overlapping method reduces (for the
case S > 1) the sample-to-sample fluctuations, but this
reduction is limited by the ratio 8 = —‘:—:; This ratio
depends on the details of the distribution function of r;
for the Gaussian distribution 8 = 1/3 and for the Pois-
son distribution 3 = 1/4. The relation between the two
methods turns out to be of order unity.

The generalization of these calculations, with partition

[
of each segment into two parts, to the case of partition
into p parts, can be made. For the general case the results
are

1
Aclzlonoverlap = §[04(2p3 - 3p2) +p2 (T4>], (12)

1
Acﬁverlap = Sv—_—p——_i__I %04(41’3 - 9172 + 21’) +P2<7'4>]'

(13)
For the case of the Gaussian distribution (with S > p)
Ac?

overlap
2
ACm:n:noverla.p

Wi

1
+ 3_172’ (14)

i.e., the minimal ratio is % This is also the result ob-
tained for the common case where the average is per-
formed using all possible values of [y, such that p =1 > 1,
and the bits obey a discrete +1 distribution, for which
ot = (rt).

In view of this one sees that the accuracy in the mea-
surement of (c) in case 2 (with overlap) is better than
in case 1 (with only nonoverlapping samples); this, how-
ever, has only a limited effect. The relation between these
cases is bounded by 8, a quantity which is determined by
the distribution function of the segments involved.

V. DISCUSSION

As we have shown, there is only a limited effect in the
use of overlapping samples. According to Eq. (12) and
the definition of Ac?, it is evident that the effect of the
overlapping average is a rescaling of the sample length,
i.e., if, for the nonoverlapping case, one gets reliable re-
sults when the sequence of N numbers is partitioned into
samples with length [ such that S = N/I, with the over-
lapping method the sequence can be partitioned into seg-
ments of length {f(p,3), where f is determined by Egs.
(12) and (13), without any loss of accuracy. However, as
one sees, for most common cases f is bounded by 1.5,
and the usage of the overlap method beyond this limit is
problematic.
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