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The trapping problem andAnderson localization
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Abstract

The equivalence between the trapping problem for randomly moving objects and the time evolution of a quantum mechanical
particle in disordered media is sketched. For static traps, the spectral properties of the corresponding Hamiltonian are shown
to determine the survival probability of the reactants. E�ects of an external drift are considered using the non-Hermitian
generalization of the localization problem. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

For more than 80 years, there is an interest in the
kinetics of reactions on uctuating manifolds. See the
review article of den Hollander and Weiss [1]. One
of the most commonly studied models is the trapping
problem, in which an A-type reactant di�uses around
until it hits a (randomly located) B-type object. The
reaction between the species A and B is A+ B → B,
i.e., when A and B molecules react, A is annihilated
while B remains intact. If [A(x)] and [B(x)] denote
the concentrations of species A and B, respectively, at
the spatial point x, the kinetic equation for the disap-
pearance of the A’s is

d[A(x)]
dt

=−k[A(x)][B(x)]; (1)
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where k is the reaction rate constant. We assume no
repulsion between the di�using molecules; each re-
actant may be considered as an independent random
walker.
In general, one may de�ne the quantity c(x), which

is the average probability to �nd an A particle at the
point x. Neglecting the uctuations induced by the
discrete nature of the A’s, the dynamics of c is deter-
mined by

9c(x; t)
9t = D32c(x; t)− U (x)c(x; t); (2)

where U (x) is proportional to the concentration of
the B molecules at x and D is the di�usivity of the A
particles.
The linear nature of Eq. (2) implies that the time

evolution of c is uniquely determined by the spec-
tral properties of the evolution (Liouville) operator
L ≡ D32 − U (x). If �n(x) and �n represent the nth
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eigenstate and eigenvalue of the Liouville operator,
the time evolution of c is given by

c(x; t) =
∑
n
cn�n(x)e�nt ; (3)

where the coe�cients {cn} are determined by the ini-
tial condition,

cn =
∫
ddx �n(x)c(x; t = 0): (4)

Although c(x) is a positive de�nite probability
function, the eigenfunctions of the Hermitian ma-
trix L may take negative and even complex values.
However, the positive de�niteness of c is preserved
by the dynamics determined by (2). The fact that
L is diagonalized above the complex �eld implies
only that the initial condition could not be chosen to
be identical with any arbitrary eigenfunction of the
Liouville operator.
Let us illustrate the equivalence between this trap-

ping problem and the dynamics of a quantum par-
ticle in disordered potential (Anderson localization)
[2]. Consider the Schroedinger equation for a particle
(say, an electron) in random potential (e.g., a bulk of
doped silicon),

− i˜9 9t =− ˜
2

2m
32 + V (x) : (5)

Eq. (2) for cmay be mapped into Eq. (5) for the imag-
inary time evolution of the electron’s wavefunction
where D plays the role of Planck constant divided by
2m, and the traps concentration in the chemical reac-
tion corresponds to the random potential normalized
by −˜. Accordingly, � ≡ −E=˜, where E is the en-
ergy of the quantum particle. In the trapping problem
the “potential”, U (x), is negative de�nite, i.e., there is
only annihilation of A type reactants. The correspond-
ing Anderson problem is characterized by positive
de�nite potential, so that the spectrum of the Hamil-
tonian is bounded from below by zero. As a result,
the spectrum of the Liouville operator L is bounded
from above by zero and all its eigenstates decay
exponentially.
The correspondence between the various trapping

problem and quantum mechanical quantities is sum-
marized in Table 1.
While a quantum mechanical eigenstate acquire a

phase, e−iEt=˜, during its time evolution, the corre-
sponding eigenstate of the trapping problem is sup-
pressed by the factor e�t (note that � is negative). The

Table 1

Trapping problem Quantum particle

D −˜=2m
U (x) −V (x)=˜
t it
c(x; t)  

dynamics of both systems is determined only by the
initial condition and the spectrum of the evolution op-
erator, so one may use known results and derive phys-
ical intuition from one �eld to the other. In the next
section, the knowledge about the spectral properties of
Anderson problem is used to derive some results for
the trapping problem. In Section 3, the recent progress
in the �eld of non-Hermitian delocalization is imple-
mented to the trapping problem in the presence of drift.

2. Density of states and survival probability

The survival probability of an A particle at time t
is de�ned as

S(t) ≡
∫
ddx c(x; t)˙

∫ 0

�d

g(�) e�t d�; (6)

where g(�) is the density of states and �d is the
lower bound of the spectrum. Although g(�) is a
non-universal quantity, it is known that, for most of
the physical cases, where the disorder is taken from
some kind of bounded distribution, the density of
states is almost constant at the middle of the band,
while at the tails [3,4,8]

g(�)˙ g0 exp[− |�0=��|d=2]; (7)

where �� measures the distance of the relevant eigen-
value from the end of the tail, i.e., in our case, from
zero or from �d. �0 ∼ D=l20, where l0 is the typical
length between two sites. This, together with Eq. (3),
enables us to determine the survival probability at dif-
ferent time domains:
Short times – the decay comes only from these

eigenvalues which satisfy �c¿1=t. If �c is in the tail
of the density of states, the decay rate is given by

S(t) ∼ e(Dt=l20)d=2 : (8)

This expression is in agreement with the one-
dimensional result presented in Ref. [1]. It should be
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noted that, for a model with no lower bound to the
spectrum (such as a model with Gaussian or other un-
bounded disorder distribution, or a continuum model)
the “short time” limit is not well de�ned.
Long times – as t → ∞, the behavior of the total

number of surviving particles is dominated by energies
near the top of the band. A saddle point evaluation of
Eq. (6) in d dimensions then leads to

S(t)˙ exp[− (t=t0)d=(d+2)]; (9)

with t0 = l20=D, in agreement with [3–6].
Intermediate times – At intermediate times the den-

sity of states is almost constant and the decay of S(t)
is exponential. The range of times in which one may
see the stretched exponential behavior is determined,
accordingly, by the width of the density of states tails.
This, in turn, could be estimated by looking for the
range of energies (eigenvalues of the Liouville oper-
ator) which are correlated with rare events, i.e., large
spatial regions with high/low potential energy. In par-
ticular, if the disorder is weak, this range of “tail”
states is out of the free particle spectrum, and its width
is proportional to the strength of the disorder, while
for strong disorder the tail width is determined by the
di�usion constant.
Another implementation of the trapping – localiza-

tion correspondence is to the transport properties of
the A’s in such a hostile environment. Let us assume
that the A reactants are deposited at the center of the
sample and are detected at its edge. (In photocon-
duction experiment, e.g., electrons are excited to the
conduction band of a semiconductor by a pulse of
light, and the traps are recombination centers [5,6].
The DC conductivity is then a�ected only by the
electrons which arrive at the surface before recom-
bination takes place.) This feature is strongly related
to the localization properties of the eigenfunction
of the Liouville operator. In particular, (4) implies
that the contribution of localized states (�n(x)
∼ exp(−�|x− x0|), where � is the inverse localiza-
tion length) to the edge density falls exponentially
with L, the linear size of the sample, while for ex-
tended states the coe�cients cn are proportional
to L−d. For strong disorder or low dimensionality
(d62) one may expect all the states to be localized,
while at higher dimensions the sample conductivity
is determined by the extended states at the middle of
the band.

3. E�ects of drift

Let us discuss now the situation of random walk
with drift, i.e., asymmetric walk, where some direction
in space is preferred. In this case Eq. (2) is modi�ed:

9c(x; t)
9t − C ·3c = D32c(x; t)− U (x)c(x; t) (10)

where C is the (constant) drift velocity. The relevant
Liouville operator,

L= D32 + C ·3 − U (x) (11)

is no longer Hermitian. However, one may still diag-
onalize this operator using a complete set of left and
right eigenfunctions [7]. If such set exists, the time
evolution of c is given by

c(x; t) =
∑
n
cn�Rn (x)e

�nt ; (12)

where

cn =
∫
ddx�Ln (x)c(x; t = 0); (13)

and�Rn (x); �Ln (x) are the left and right eigenfunctions
which correspond to the �n eigenvalue. In the special
case of (10) it is possible to complete the square to
obtain,

L= D
(
3 + C

2D

)2
− U (x)− v2

4D
: (14)

Thus, the e�ect of the drift is splitted into global shift
of the energy levels by −v2=4D, accompanied by a
“gauge transformation” 3 → 3 + C=2D. Following
[7] we note that the imaginary gauge �eld may be
eliminated using the transformation

�n(x; t)→ e±C·x=2D�n(x; t) (15)

(the ± correspond to the left and right eigenfunc-
tions). This transformation takes the Liouville opera-
tor to its original form shifted by the factor v2=4D, and
its spectrum is related to the driftless case by �n →
�n − v2=4D. The above stretched exponential behav-
ior of the long time tail is now superimposed on the
simple exponential decay from the drift, i.e.,

S(t)˙ exp
[
− v2t
4D

]
exp[− (t=t0)d=(d+2)]: (16)

What are the conditions for Eq. (15) to be applica-
ble? The exponential factor diverges as C · x→ ∞, so



624 N.M. Shnerb / Physica E 9 (2001) 621–624

Fig. 1. Energy spectra of one-dimensional 1000-site lattice model with random on site potential and drift, where t is the hopping rate
(D=l20) and � is the eigenvalue of Liouville operator. The resulting spectrum for the same realization of the random potential is plotted here
for three di�erent values of v. (a) Case of small v; all eigenstates are localized (top) (b) intermediate v; bubble of complex eigenvalues
indicating extended states appears near the center of the band (middle) (c) large v; all the eigenstates are extended (bottom).

that the corresponding wavefunction is not square in-
tegrable, unless the “original” eigenfunction is local-
ized, � ∼ e−�|x|, with Liapunov exponent �¿v=2D.
As the drift grows, transformation (15) interfere with
the boundary conditions for any �nite sample. In this
case the eigenvalues become complex [7]. The local-
ization length is known to be maximal at the cen-
ter of the band and minimal at the tails. As a result,
a “bubble” of complex eigenvalues is formed at the
center of the band and spread to its edges, as shown
in Fig. 1 for a one-dimensional lattice realization of
this system.
Since the dynamics at long times is determined

by the tail of the spectrum, the e�ect of the drift on
the stretched exponent for S(t → ∞) is important
only if the drift is strong enough to delocalize the
tail states. The density of states in one dimension is
then [8]

g(��)˙ 1=(��)1=2; (17)

which gives only logarithmic corrections to the
exponential decay of the survival probability, in

qualitative agreement with the transition as a
function of the bias found by Movaghar et al.
[5,6]. In higher dimension, it is also true that
the density of states at the tail diverges accord-
ing to a power law [8] and the corrections to the
exponential decay of S(t) are only logarithmic.
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