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Abstract

We present a new method to describe time series with a highly complex time evolution. The
time series is projected onto a two-dimensional phase–space plot which is quanti6ed in terms of
a multipole expansion where every data point is assigned a unit mass. The multipoles provide
an e7cient characterization of the original time series. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Up to now, two diAerent measures of HRV analysis have been applied in the
medical research: (a) Scale-dependent measures as SDNN (the standard deviation of the
beat-to-beat interval time series); the standard deviation of the multiresolution wavelet
transform as used by Turner et al. [1]; the standard deviation of the detrended time
series as de6ned by Ashkenazy et al. [2], and (b) scale-independent measures (as the
scaling exponent of the detrended Euctuations (DFA) as introduced by Peng et al. [3]).

Both methods have shown limited applicability individually [4–6], but rather a
combination of both is necessary [7].

In clinical medicine, the dynamics of the beat-to-beat (RR) time series is commonly
represented by a phase–space (or recurrence) plot, where each R–R interval is plotted
against the previous one. The classi6cation of the phase–space plots is traditionally
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performed by visual inspection and semi-quantitative analysis of the various measures
describing the features of the plot, as the length or width [8–10]. But, as pointed out
by Malik [11], this approach ignores the varying density of points leading to similar
plots due to hearts with very diAerent dynamics.

In this article, we present a new way to investigate phase–space plots from complex
time series. In our analysis we calculate measures and parameters, which describe the
features of the plot. The advantages of the method will become evident when applying
it to well-known dynamical systems. By applying the method to the DIAMOND study
[12] we shall demonstrate that these measures and parameters have more prognostic
power than previous suggested risk markers.

2. The multipoles

We interpret the two-dimensional phase–space plot as a two-dimensional body where
each data point is assigned a unit mass. The distribution of points will be expressed
by the various moments known from (gravitational) potential theory.

The monopole M represents the total mass, i.e., the number of data points. The
gravitational dipole moment vanishes by choosing the origin of the coordinate system
in the centre of mass. As the quadrupole tensor is traceless, we may restrict ourselves
to the following form:

Qij =
(
Qxx 0
0 Qyy

)
(1)

and Qzz =−(Qxx+Qyy), where Qxx=
∑

	(2x
2
	−y2

	) and Qyy=
∑

	(2y
2
	−x2

	); the sums
are over all the data points.

Here, the x and y coordinates of the data points are measured in the principal
coordinate system, where the oA-diagonal terms of the Qij tensor vanish. These axis
are positioned in praxis for beat-to-beat time series along and vertical to the diagonal
of the original phase–space plot.

Similarly, the octupole moments (with z = 0) in the principal axis coordinate are
given by

Txxx =
∑
	

(6x3
	 − 9x	y2

	) ;

Tyyy =
∑
	

(6y3
	 − 9x2

	y	) ;

Txxy =
∑
	

(36x2
	y	 − 9y3

	) ;

Txyy =
∑
	

(36x2
	y	 − 9y3

	) ;

Txzz =
∑
	

(−9x	y2
	 − 9x3

	) ;
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Tyzz =
∑
	

(−9x2
	y	 − 9y3

	) : (2)

Since Tyzz + Txxy = −3Tyyy and Txyy + Txzz = −3Txxx, there are only four independent
octupole measures.

Finally, the hexadecapole moments (with z = 0) in the principal axis coordinate
system are

Hxxxx =
∑
	

(24x4
	 − 72x2

	y
2
	 + 9y4

	) ;

Hxxxy =
∑
	

(240x3
	y	 − 180x	y3

	) ;

Hxxyy =
∑
	

(−72x4
	 + 486x2

	y
2
	 − 72y4

	);

Hxyyy =
∑
	

(−180x3
	y	 + 240x	y3

	) ;

Hyyyy =
∑
	

(9x4
	 − 72x2

	y
2
	 + 24y4

	) ;

Hxxzz =
∑
	

(−72x4
	 − 72x2

	y
2
	 + 9y4

	) ;

Hyyzz =
∑
	

(18x4
	 − 54x2

	y
2
	 − 72y4

	) ;

Hxyzz =
∑
	

(−180x3
	y	 − 180x	y3

	) (3)

and since Hxxxy + Hxyyy = −1=3 Hxyzz and Hxxzz + Hyyzz = −6Hzzzz, there are only six
independent hexadecapole measures.

For the purpose of elucidating these multipoles, we demonstrate their characteristics
on distributions D(x; y) that are reminiscent of actual density distributions from ECG
recordings.

In Fig. 1, we show the distributions along the x and y axis, respectively, for a
typical phase–space plot of a 24-h Holter recording, where all the points were projected
along the x- or y-axis, respectively. To a 6rst approximation they can be described by
Gaussian distributions, with �x and �y as standard deviations along the x- and y-axis,
respectively. Therefore, we consider as a 6rst example the density distribution as a
product of two Gaussians.

The quadrupole measures are then given by

Qxx =
∫ ∫

(2x2 − y2)D(x; y) dx dy = 2�2
x − �2

y ;

Qyy =
∫ ∫

(2y2 − x2)D(x; y) dx dy = 2�2
y − �2

x : (4)

Whereas in three dimensions a homogenous sphere has only zero quadrupole moments,
its projection on the plane has a Gaussian mass distribution along the radial direction.
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Fig. 1. The projected distributions along the x (lower curve) and y-axis (upper curve), respectively, for a
typical phase–space plot of a 24-h Holter recording from a healthy individual.

If the projection is on the x–y plane one has a phase–space plot with a circular shape
where the density of points decreases with increasing distance from the origin with
�x = �y. In this case both principal quadrupole moments are positive.

A vanishing quadrupole moment, for example Qyy, is obtained for �x=
√

2�y, which
de6nes a reference ellipse in two dimensions; here Qxx =3�2

y. Varying the �x=�y ratio,
one obtains more or less elongated ellipses along the x-axis or y-axis, depending on
�x=�y

√
2.

For a symmetrical distribution as the Gaussian distribution the octupole moments
vanish. We choose as a model distribution along the x-axis the normalized double
exponential distributions

E(x) =
exp{−�xx − e−x}

�(�x)
(5a)

and

∃(x) =
exp{�xx − ex}

�(�x)
; (5b)

where the parameter �x can obtain positive values and �(�x) is the Gamma function.
Similar distribution can be de6ned along the y-axis. A few curves with various �’s

are shown in Fig. 2. These distributions are non-symmetric; the degree of the deviation
from symmetry is de6ned by the skewness �, which is de6ned for any distribution �(x)
by

�=

∫∞
−∞ Ox3�(x) dx

�3
x

; (6)
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Fig. 2. The double exponential distributions: (a) E(x), (b) ∃(x) for � = 1; 2; 3.

with �x being the standard deviation of the distribution. For E(x) the skewness is
positive, while for ∃(x) it is negative.

The quadrupole moments with these distributions are still as in Eqs. (4), where the
variance is now a function of �:

�2 =�(1)(�) : (7)

�(1)(�) is the Trigamma function; in general, the Polygamma functions are de6ned as

�(n)(�) =
dn+1

d�n+1 ln�(�) : (8)

The octupole moments are given by

Txxx = ∓6�(2)(�x) ;

Tyyy = ∓6�(2) (�y) ;
Txyy = ±9�(2) (�x) ;

Txxy = ±9�(2) (�y) : (9)

The upper sign applies for E(x) and the lower for ∃(x).
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These moments can be also expressed in terms of the skewness:

Txxx = 6�x�3
x ;

Tyyy = 6�y�3
y ;

Txyy = −9�x�3
x ;

Txxy = −9�y�3
y : (10)

The hexadecapole moments are rather cumbersome to interpret, hence we choose to
employ the kurtosis [13], which is related to the hexadecapole moments:

�x =

∫∞
−∞ Ox 4�(x) dx

�4
x

− 3 : (11)

The kurtosis is negative for a Eat topped distribution, vanishes for a Gaussian
distribution and is positive for a sharp peaked distribution. For both double exponential
distributions it is given by

� =
�(3)(�)

[�(1)(�)]2
: (12)

3. Application to a non-linear system

We shall in the following consider a simple non-linear system for ordinary diAerential
equations with time varying attractor dimension. Such a system was treated by Saermark
et al. [14].

The model is de6ned by the equations
dx
dt

= 	(−y − z) + ��(y − y0 − x + x0) ;

dy
dt

= 	(x + ay) + �((x0 − x)(z − z0) + r(x − x0) + y0 − y) ;

dz
dt

= 	(b+ z(x − c)) + �((x − x0)(y − y0) − B(z − z0)) : (13)

The system reduces to the well-known RPossler system for 	= 1 and �= 0 and to the
Lorenz system for 	 = 0 and � = 1. In Ref. [14] we con6ned the examination of this
system to the unit circle 	2 + �2 = 1 and investigated more closely the time evolution
for the system when 	 is 6xed, 	=0:037005. The parameters for system (13) employed
in Ref. [14] are given in Table 1.

In Fig. 3 (taken from Ref. [14]), we display the trajectory for three diAerent intervals.
For the 6rst 60 000 data points the trajectory is a limit cycle. A time local dimension

was calculated for this segment and was found to be 1.35.
The next 255 400 data points exhibit a typical Lorenz-like behaviour, which however

is limited in time and followed by an approach to a 6xed point (the last 85 000 data
points). While the Lorenz-like segment may be characterized by a dimension of 1.78,
the last segment can obviously not be ascribed any dimension.
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Table 1
The parameters for system (13)

a 0.15
b 0.20
c 10.00
r 45.92
B 4.00
� 16.00
x0 −0:003001
y0 0.02001
z0 −0:02001

Fig. 3. The trajectory for the system (12) for the three diAerent intervals: (a) 1–60000 data points,
(b) 60001–315000, (c) 315001–400000.

In Ref. [14], Fig. 4a, outbursts of strong and intermittent oscillations of the
x-component are apparent. They coincide precisely with the transitions from more
stable to more complex types of trajectories and are repeated during the transition
from the Lorenz-like attractor to the approach to a 6xed point. This varying behaviour
underlines the need for a more time-sensitive mode of description of such systems.
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Fig. 4. (a–c) The phase–space plot for the x(t) coordinate of system (12) for the same intervals as in
Fig. 3. The plot is along the principal axis (see text).

This system can also be treated with the multipole technique.
As a 6rst step, we construct the phase–space plot of the x-coordinate. Fig 4 shows

the phase–space plot for the same three time segments treated in Ref. [14]. Not
surprisingly, there is much resemblance between the trajectories (in this case in the x–z
plane) and the phase–space plots for each of the three time segments. Moreover, as the
last two time segments yield similar trajectories, they also yield similar phase–space
plots. However, the similarity between the two trajectories cannot be described by two
approximately, equal correlation dimensions, since the correlation dimension cannot be
de6ned for the approach to a 6xed point. On the other hand, the resemblance between
the two phase–space plots is characterized by two approximately identical quadrupole
moments (see Table 2).

The diAerence between the 6rst two time segments is in the case of the trajectories
represented by two rather diAerent dimensions (1.35 and 1.78, respectively) and in the
case of the phase–space plots reEected by two rather dissimilar quadrupole moments
(1.2 and −83, respectively).

But the multipole moments add some additional information about the distribution
of the data points which is not available from the correlation dimension.
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Table 2
Summary of the fractal dimension df and various multipoles for system (13) for the three time segments.
For comparison the results for the RPossler and Lorenz attractor are given

Number df Qxx Qyy Txxx Tyyy �x �y �x=�x
of points

RL I 5995 1.36 0.38 1.2 0.35 −0:15 0.51 0.49 0.96
RL II 25500 1.78 261 −83 18309 −92 0.12 0.11 0.94
RL III 8500 n.a 297 −98 19487 −151 0.11 0.11 0.95
RPossler 40000 2.13 255 −127 1465 0.9 0.05 0.50 9.80
Lorenz 40000 2.07 508 −186 −32 13 0.04 0.08 2.02

In Fig. 5, we display for each of the three time segments the point density around
the two principle axis of the phase–space plot. The symmetry along the y-axis and the
lack of symmetry in the two latest time segments along the x-axis is evident. Some
similar symmetry=asymmetry also appears in the trajectories.

The lack of symmetry (large skewness) along the x-axis for the last two time
segments is reEected by the large octupole moments Txxx(∼ 104), whereas the near
symmetry (small skewness) along the y-axis is reEected by the much smaller values
for the octupole moments Tyyy for the three time segments (∼ 102).

It is noteworthy that the second and third time segments have approximately the
same kurtosis along the x-axis (�x) and along the y-axis (�y), but a much higher
x- and y-kurtosis for the 6rst time segment. This reEects the small spread of data
points around the origin of the principal axis during the 6rst time segment, and their
subsequent dispersion during the second and third time segments. It is remarkable that
the ratio of the y- to x- kurtosis (�y=�x) stays almost constant and close to one at
all times. This value is much closer to the value of (�y=�x) for the Lorenz attractor
than for the RPossler attractor (2.02 and 9.80, respectively) and reEects the overall
resemblance of the combined system considered with the Lorenz attractor rather than
with the RPossler attractor. This resemblance with the Lorenz attractor is expected due
to the small 	 value, but is not revealed by either the rather identical correlation
dimensions for these two attractors or their quadrupoles.

4. Application to the Diamond study

We shall in the following demonstrate how the multipoles perform as predictors for
mortality in the group of survivors after acute myocardial infraction in the Diamond
study [12].

In this study 446 survivors of acute myocardial infarction (AMI) were enrolled.
DiAerent methods of analyzing HRV were compared with respect to predictive power
of death after AMI. HRV was obtained from consecutive R–R intervals from 24 h
ECG recordings 5–10 days after AMI. The mortality was 25.6% after a follow-up of
685 ± 360 days (114 died).
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Fig. 5. The point density distribution along the two principal axis of the phase–space plot in Fig. 4. The
time intervals are as in Fig. 3 (thick curve: along the x-axis; thin curve: along the y-axis).

By calculating the quadrupole moments for all 446 recordings one can achieve a
6rst separation into a high-risk group (Qyy ¿ − 1400 1 ) and into a low-risk group

1 The quadrupoles are given in ms2.
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Fig. 6. Qyy as a risk factor. The patients are grouped into groups of 50 according to decreasing Qyy .

(Qyy ¡− 1400). This 6rst separation has a better overall predictive accuracy than the
standard deviation of the RR intervals (SDNN), which is the conventional HRV marker.
In Fig. 6, we show that the mortality is decreasing with increasing values of Qyy.

In order to appreciate the signi6cance of the octupole moment we show in Fig. 7
the phase–space plot from two of the recordings from the Diamond study. They have
approximately the same value for the quadrupole moment but very diAerent octupole
moments. Fig. 7a shows the phase–space plot of a survivor with the highest concen-
tration of data points on the positive part of the x-axis, with the interpretation that the
heart beats for extended periods with a low pulse rate (large RR intervals), where as
Fig. 7b shows the plot of a deceased individual with the larger part of data points
concentrated on the negative part of the x-axis, i.e., the heart is beating with a high
pulse rate for extended periods. In Fig. 8a, we show the separating power of the
octupole Txxx: 2 A similar analysis can be applied to the octupole moment Tyyy on
the y-axis. The main result is that a high concentration of phase–space points on the
positive y-axis (positive y-skewness) indicates a slow decrease and a fast increase in
the heart rate which is a sign of impaired sympathetic and\or parasympathetic ner-
vous system. Negative skewness on the y-axis, implying a slowly increasing and fast
decreasing pulse, is hence one of the indications for a well-functioning heart function,
which is also con6rmed by the histogram in Fig. 8b.

The additional octupole moments add very little to the overall predictive accuracy
in the Diamond study and therefore are excluded here.

Instead of seeking out the signi6cant ones among the 16 hexadecupole moments,
we shall use the kurtosis as mentioned above which is a powerful risk marker in the
Diamond study. Table 3 lists 10 individuals with low-risk quadrupole and octupole
moments but with a high value for concentration both around the x-axis as well as the
y-axis and with a mortality of 90%, remarkable high relative to the overall mortality
of 30%.

2 The octupoles are given in ms3=103.
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Fig. 7. Phase–space plots for survivor (a) and non-survivor (b). Both have approximately the same Qyy .



272 M. Lewkowicz et al. / Physica A 311 (2002) 260–274

Fig. 8. (a) Txxx as a risk factor. The patients are grouped into groups of 50 according to decreasing Txxx .
(b) Tyyy as a risk factor. The patients are grouped into groups of 50 according to increasing Tyyy .

Table 3
11 patients with low-risk quadrupole and octupole moments, but with high-risk kurtosis ratios

Patient # Patient status Qyy Txxx �y=�x

1 Deceased −1828 −797 1.97
2 Deceased −1560 −108 2.01
3 Deceased −1797 −95 2.25
4 Deceased −1856 −389 2.27
5 Deceased −2101 −444 2.31
6 Deceased −2637 −1160 2.36
7 Alive −1635 −204 2.37
8 Deceased −1525 −331 2.38
9 Deceased −1926 −261 2.40

10 Deceased −1702 −316 2.43
11 Deceased −1426 −69 2.48
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Fig. 9. MPW as a risk factor. The patients are grouped into groups of 50 according to decreasing MPW.

Combining by optimization (as for example in Ref. [15]) the various moments into
one parameter we obtain a combined parameter with an improved predictive accuracy.

Fig. 9 shows the predictive potential of the optimized parameter, MPW (multipole
moments weighted), where Qyy, Txxx and �y=�x are taken into consideration.

5. Discussion

We have studied two examples of non-stationary systems with rather complex time
evolution.

The series of RR intervals is an excellent example of a non-stationary and non-linear
time series with a very complex behaviour. It seems reasonable to expect that the
regulation of the heart rhythm which is a very complex mechanism due to its depen-
dence on many subsystems in the body can be described optimally only by a method
which has a diversity of diAerent parameters describing partly diAerent behaviours of
those subsystems.

The MPW performs better than the SDNN and the DFA which were superior among
the methods compared in the study [8]. We conclude that the Multipole Method extracts
information both in the frequency domain as well as in the time domain, and therefore
performs better in prognostics than the traditional HRV methods, which are imbedded
in one of the two domains.

The multipoles moments diAer crucially from the SDNN which does not include
any time-ordering (shuSing the RR intervals will result in almost the same value for
SDNN), while the multipoles due to the very construction of the phase–space plot bear
intrinsic time dependence.
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We also studied a combination of two well-known chaotic attractors, the Lorenz and
the RPossler attractor. We showed that a fractal dimension analysis only partly reEects
the richness that the combined system exhibits.

Generally, the dimensional analysis is only feasible for systems which do not
undergo marked changes in their time dependence. For those systems multipole anal-
ysis may reveal more details since it contains diAerent moments describing diAerent
characteristics of the system studied.
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