
1 
 

Coherence, conservation and patch-

occupancy analysis.  

 

Yossi Ben-Zion and Nadav M. Shnerb 

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.  

 

Abstract: 

Spatial coherence (synchrony) among subpopulations poses a danger to the 

metacommunity, as it increases the risk of regional extinction.  When this effect is 

significant, the use of  inference technique  based on the stochastic patch occupancy model 

(SPOM) may be inadequate, since SPOMs assume that each habitat patch is either occupied 

or empty and neglect the intra-patch dynamics.  Here we suggest a general classification of 

the dynamics that allows one to identify, in a model-independent way, the regimes where 

coherence effects are strong.  We also present a new technique, based on patch occupancy 

(presence/absence) data, to identify the role of spatial coherence in the stabilization of a 

metapopulation and to give an early warning against the possibility of regional-scale 

extinction. When this scenario occurs a decrease in the movement of individuals (habitat 

fragmentation, reduced dispersal rates) has a positive effect on the sustainability of the 

spatially distributed population. The results of individual based simulations of a spatially 

structured population are analyzed with SPOM  and the regime where the two-state 

approximation is fails is identified.           
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Introduction 

 

One of the main challenges in the practice of ecologists is to assess the risk of extinction of a 

spatially structured population of certain species.  In many cases,  the movement among 

subpopulations is affected by human activities that alter natural migration patterns by 

changing the connectivity (habitat fragmentation, conservation corridors (1)) or the dispersal 

rates of individuals.  Prior knowledge about the dynamics of such a system is generally very 

limited, as the time series collected for the spatio-temporal abundance of local populations, 

if any, are typically solitary, poor, noisy and short.  Accordingly, one would like to implement 

some generic algorithm that does not depend on any specific detail of the population 

dynamics with gross parameters that can be estimated even from crude datasets, like those 

showing only presence-absence of individuals on a habitat patch.   

One popular technique of this kind is based on the stochastic patch occupancy model, SPOM 

(2-5).  This model assumes that each patch is either empty or posses more or less its carrying 

capacity, i.e., it allows only two states for each subpopulation.  Then it assumes that the 

chance of local extinction decreases and the chance of recolonization increases, with the 

number of occupied neighboring patches. Under these assumptions, an increase in the 

connectivity or the dispersal rate always increases the lifetime of the population, so the 

prediction that conservation corridors will enhance sustainability is not an outcome of the 

model but part of its assumptions.  SPOM-based algorithms only quantifies how much gain 

one gets from a certain manipulation that facilitates movement, but the qualitative effect is 

presupposed.   

There is a regime where this outlook, and the SPOM algorithms, is very efficient.  Increasing 

the connectivity between habitat patches or islands allows for recolonization, decreases 

fluctuations and, accordingly, is considered in general as a stabilizing factor (6-9).  There are, 

however, scenarios where an increase in the connectivity, or in the movement of individual 

inhabitants, induces  coherence (synchrony) among patches and increases the risk of 

regional extinction. In this regime, movement and connectivity  reduce the sustainability of 

the system (10, 11).  

The negative effect of coherence among subpopulations on the sustainability of spatially 

segregated systems has been confirmed in a series of laboratory experiments (12-18), and is 

the subject of many recent theoretical works (19-21).  Less attention has been devoted to 
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the observation of this effect in field studies: when the analysis is carried out using SPOM 

one cannot detect this phenomenon since SPOM neglects the intra-patch dynamics as will 

be discussed in detail below.  One would like, thus, to have a diagnostic tool that allows for 

the detection of coherence effect given a low-quality timeseries.  In almost all practical cases 

the data collected does not allow the researcher to identify the exact model that describes 

the population dynamics, not to mention a retrieval of the model parameters.  

The aim of this paper is to provide such a tool. To do that, we are following a few steps: 

1. In sections 1 and 2 we are trying to identify the parameter regimes where the effect 

of coherence is significant (and SPOM may become inadequate) by looking at a few 

standard models of population dynamics. The goal of this discussion to provide a 

qualitative insight: coherence is relevant when the subpopulation dynamics is time-

varying and extinction-prone. These crude features, although extracted from 

theoretical analysis of models, are generic and model-independent, and one may be 

able to identify them even using short-time noisy data.  

             

2. In section 5 we present a technical tool that utilizes presence/absence data and 

provides quantitative measure for the effects of coherence. This is done, basically, 

by showing deviations from the predictions of SPOM. To do that we first analyze the 

assumption of SPOM in detail (section 3) and present an individual-based simulation 

procedure that imitates a realistic  system and allows for a comparison between the 

stabilizing and the destabilizing effects of migration (section 4).  

 

It should be noted that spatial synchrony is not the only factor that limits the stabilizing 

effect of dispersal. In some ecosystems there is a "cost" for migration, e.g., an increased 

mortality of individuals that leave their habitat (22-24). Increased movement among patches 

leads, in these systems, to a higher death rate and extinction.  We are not dealing with this 

effect here.  Changing the connectivity of the spatial network by introduction of 

conservation corridors may also by problematic if it allows for invasion by exotic species, 

movement of overzealot predators between patches and the spread of infectious diseases 

(25, 26).   We are not dealing with these effects here.  
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To start, let us remind the known facts about the role of migration in spatial ecological 

communities and provide more introductory material.  

A metapopulation is made of many distinct subpopulations connected by migration. Here we 

consider only density independent (passive) migration, so the chance of emigration and the 

success of recruitment do not depend on the local population density.  An increase in the 

level of migration (either by changing the connectivity of the system, e.g., by the 

construction of corridors, or by manipulations of the level of individual's movement) leads to 

the reduction of spatial variance. This has two outcomes:  

1. When the transfer of individuals among patches is frequent one may consider a few 

nearby patches as if they were effectively a single habitat.  The size of the 

population on this effective patch is the sum of the local populations.  Accordingly, 

the relative importance of demographic or (spatially uncorrelated) environmental 

fluctuations decreases. This size effect by itself is a stabilizing factor, as it "buffers" 

the population from stochastic variations and decreases the   risk of extinction as the 

relative amplitude of fluctuations (compared to the total size) declines (27, 28).  

Migration also facilitates the recolonization of empty patch habitat (rescue). Along 

this paper we refer to all these effects – the stabilizing aspects of migration – 

collectively as the "buffering effect".     

 

2. Migration acts against spatial variations and leads to more coherence (synchrony) 

among local patch habitats. This effect is potentially dangerous, as it may expose the 

population to the threat of regional extinction, when all local habitats reach the low-

population state at the same time.    

In the relevant parameter regime the buffering effect and the increase of coherence may 

interfere, and one would like to know which of them is stronger. It turns out that the answer 

depends very much on the local dynamics of the system, which may be extinction robust or 

extinction prone. In the next section we explain these terms, show that the buffering effect 

of population size depends strongly on these features and that for extinction prone 

dynamics the benefit from an increase of the population size is quite limited.  In section 2 we 

show under what conditions spatial coherence poses an important threat to persistence and 

increased connectivity becomes dangerous.  In this parameter regime, it is important to 

obtain a measure of the ratio between these effects in order to predict, or at least to suggest 
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an educated guess about, the results of habitat fragmentation or an increase in the 

connectivity.    

Popular inference tools for field data, like SPOMSIM (2), are based on the stochastic patch 

occupancy model. In the third section we explain why this method cannot detect coherence 

or its absence. This has to do with the projection of all intra-patch states on a single state 

("occupied") implemented by SPOM. Individual based models, like the one presented in 

section 4, allow one to estimate the importance of both buffering and coherence effects, but 

it is quite difficult to infer their parameters from field observations. In the last section we 

suggest a method that, like SPOM, utilizes presence/absence data only, but allows one to 

detect that the system is actually at the range of parameters where spatial coherence is an 

important destabilizing factor.  This method may be used in order to identify the coherence 

effects in field data and, more practically, to find out when increased connectivity becomes 

harmful; in this parameter regime a reduction in the number of links, rather than the 

construction of conservation corridors, is the recommended conservation strategy.   

Throughout this paper we are deliberately switching between different models of 

population dynamics.  Clearly, all models of ecological communities are approximations, and 

one would like to find generic insights, rather than model-specific results.  Our goal here is 

to study some common features of all these models in order to achieve generic qualitative 

insights and to develop ability to detect different regimes.   Although we cannot suggest an 

algorithm that predicts extinction times from the available data, we can provide a few rules 

of thumb that may assist conservation management. In particular, the technique suggested 

here may detect where, in a spatially extended system, the population suffers from 

overcoherence; in this spatial region one would like the decrease the movement of 

individuals and to avoid conservation corridors.      

           

1. Extinction prone vs. extinction robust dynamics  and the 

importance of population size. 

 

The basic distinction we are making in this section is between stable and extinction prone 

systems. To get some intuition, let us take a look at  Figure 0. Four hypothetical timeseries 

describing the abundance of local population are presented. These timeseries were 

generated using standard population dynamics models with noise.  By smearing the data 
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one can distinguish between the average trend associated with the deterministic model (the 

full line) and the erratic jumps associated with the stochasticity. A system is extinction prone 

if these random fluctuations may drive it to extinction, i.e., if the "width" of the line in its 

lowest points (the infimum) is touching zero.   

Another important distinction we would like to make is between systems (like the Malthus-

Verhulst logistic growth discussed below) that support an equilibrium population and time 

varying systems.  For an equilibrium dynamics the stochastic fluctuations are spread around 

a fixed value, as demonstrated by the two upper panels of Figure 0, where the line that 

represent some moving average stays almost fixed after a short period of equilibration, and 

extinction occurs due to large fluctuations (see  also Fig. 4).  Other population dynamics 

systems support internally driven population cycling so the average population density is 

oscillating in time.  As we shell show below,  for spatially distributed population coherence 

effect are much more pronounced when the system is time-varying.   

 The rest of this section is devoted to a more detailed analysis of  the conditions for 

"extinction proneness" in technical terms associated with specific models and a few types of 

noise, but the overall picture is model independent so the uninterested reader can skip the 

discussion below and move to the last paragraph of this section.     

We are implementing here a few elementary (single and two species) population dynamics 

models that are widely used in the analysis of simple eco-communities (29). These models 

(like logistic growth, Nicholson-Bailey model for parasitism and so on) are all deterministic 

and lack of any spatial structure (well-mixed population). Moreover, the population density 

in these models never crosses zero, i.e., the model per se does not allow for extinction (30).  

To assess the chance of extinction one should add a threshold for the dynamics, assuming 

that if the population is below some level it effectively perished.  If extinction happens due 

to stochastic events (a few bad years, accidental death of animals) noise must be added to 

the model.  One of the most important forms of noise is demographic stochasticity (31, 32), 

which is inherent to any population dynamic. This noise yields fluctuations in the population 

size and allows for a natural definition of the extinction state as the case where the 

population reaches zero (an absorbing state), so there is no need to introduce an artificial 

threshold.  Here we implemented individual-based simulations with demographic noise, but 

we have examined numerically the same systems with environmental noise and make sure 

that the main results still hold.   
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In the simplest models of population dynamics the size of the community reaches 

equilibrium, and extinction happens due to large fluctuations (see Figure 0, upper panels). 

To understand what controls the chance of extinction let us take a look at one specific and 

well-studied model of this type, the logistic growth (33).  The results of this model will 

provide us with a general (not model-specific) insight about the chance of extinction for an 

isolated population.  

The simplest deterministic model for well-mixed (single patch) population dynamics is the 

continuous time logistic equation,  

 (1)                              

                               

.1 









K

x
rx

dt

dx
 

X, the population size, reaches equilibrium at carrying capacity K. For the deterministic 

differential equation (1) K is merely a scale factor: in fact, one can absorb it into the 

definition of the effective population density by defining y = x/K, obtaining the same 

equation for y with K=1.  However, in reality the carrying capacity of the system corresponds 

to an integer that reflects the equilibrium number of individuals, thus determining the 

chance of extinction due to demographic fluctuations (34, 35).  

Let us consider now a specific stochastic process that corresponds to Eq. (1).   If A is a single 

individual, the stochastic-logistic process involves the transitions: 
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where ,  and  are the rates of birth, death and competition related death,  respectively.  

This process satisfies a  master equation in which   Pn stands for the chance to find n A-s (36):  
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The process (2) corresponds to Eq. (1) in the following sense: defining the average number 

of individuals at time t, )(Pn(t) n tn
n

 , the time evolution of this quantity is given by 

(4)      .)()1(- n   1)-n(n- n
dt

nd
nVarnn     
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If the variance is small (which is the case when the population is large), this time evolution 

converges to (1) with  r  and 1






K . The +1 shift in the value of K 

reflects the absence of self-competition, such that the competition term in (4) vanishes 

when there is only one animal.   In fact in most cases nnVar )(   (see Appendix A), with this 

 r and   ,/ K   but the differences are irrelevant for the discussion below. 

K is the equilibrium number of individuals in the following sense: when the number of 

individuals is smaller than K, the rate of birth (times the population size) is larger than the 

overall rates of death and competition, so it is more probable that the population will grow 

in the next timestep. The opposite is true when the system occupancy is larger than K.   

What is the typical timescale for extinction of such a system under demographic noise? A 

simple argument suggests that if we have K individuals in the system, extinction occurs when 

K death/competition events happen without any birth. Clearly, the chance for such a giant 

fluctuation falls exponentially with K, i.e., like )exp( Kt  where  is some constant (35).  

Although one may suggest many other routes to extinction, the basic insight holds true:  

recent analyses (36-39) allows one to find exactly the coefficient , and even to calculate 

the pre-exponential dependence. 

However, this intuitive argument [see also (36, 38-40)] is true only if the carrying capacity K 

is large enough.  With demographic noise, the number of individuals at equilibrium is not 

exactly K. Instead,  the chance to find N individuals is distributed, more or less normally, 

around K  [this "Gaussian approximation" is in the core of the   expansion suggested in  

(41);  for its  limitations see (36)].  The standard deviation of this Gaussian is growing like the 

square root of K, with a coefficient determined by the Lyapunov exponent of the fixed point,

1

)(






K

K
r


 ; for small r and large K,   the STD   scales like rK 2/~ . 

[This result has been obtained using a moment truncation approximation. For a detailed 

description of the method and a comparison with other techniques, see Appendix A.]   

Within this regime, i.e., when   nK , the occupancy fluctuations are more or less 

unbiased, since the differences between the overall birth and the overall death rates are 

tiny.  When K , thus,  the dependence of the system lifetime on K is much slower than 

exponential: for example if there is no bias at all (r=0) the typical time to extinction scales 

like K3/2 (42). This phenomenon manifests itself in Fig.1, where the transition from non-
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exponential dependence of the lifetime on K to exponential stability is demonstrated for 

different values of the Lyapunov exponent r.   

While we have considered here only one specific example, the basic moral holds true for any 

deterministic dynamics that support an attractive manifold (a stable fixed point, a limit cycle 

or even a chaotic orbit, as long as these orbits do not "graze" the zero occupancy state). All 

these systems may be in the extinction robust state, where the time to extinction is growing 

exponentially with the occupation numbers (if these numbers are varying in time, with the 

infimum of the population size). This is the case as long as the distance between the infimum 

and zero is large with respect to . Otherwise, the system is in the extinction prone state 

and its lifetime grows with its carrying capacity in a slower, non-exponential manner.   

For some classes of deterministic models there is no extinction-robust sector even if the 

typical occupation numbers are large. These are the dynamics that admit zero infimum, like 

the Nicholson-Bailey map for host-parasitoid interaction or the discrete version of the 

logistic equation, the logistic map  

(5) 









K

x
rxx t

tt 11   

for r=4  (see Fig. 2).  An isolated population that follows these dynamics is always extinction-

prone.     

In the extinction robust phase, the time to extinction is growing exponentially with its 

carrying capacity. This implies that the buffering effect – reduction of the relative amplitude 

of fluctuations - is very strong, and in the typical scenario it will, most probably, dominate 

the coherence effects. On the other hand, when the system is extinction prone the effect of 

buffering is relatively weak, and thus other mechanisms that affect stability may become 

more important. 

 

2. Spatial structure:  coherence and regional extinction  

 

Given the analysis of local population dynamics provided in the last section, we now move 

on to consider ecological communities that are made of spatially segregated colonies, or 

habitat patches, with some level of migration between them. Transfer of individuals buffers 

the system, reduces the effect of fluctuations and allows for recolonization of empty 
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patches.  Accordingly, construction of "conservation corridors" (1) among habitats is 

considered a possible human intervention that may decrease the chance of extinction for an 

isolated population.    Habitat fragmentation, on the other hand, poses a danger to the 

stability of an eco-community.  In this section we implement a simple, two-patch example, 

to explain the conditions under which these suppositions are valid and to exemplify the case 

where they become wrong.  We will try to emphasize the difference between equilibrium 

and time-varying local dynamics. For time varying systems, spatial coherence may be a 

crucial factor in the persistence of a spatially structured population.     

Let us consider a community on two isolated and identical patches. Transfer of animals is 

not allowed, so any local community lives and perishes according to the principles sketched 

in the last section. If the typical lifetime of a single local habitat is , the lifetime of two 

isolated patches will be roughly the same.  (To be more rigorous, the time until extinction of 

both colonies is the maximum of two numbers drawn from the same random distribution, 

this number depends only logarithmically on the number of patches).  

Now what happens if one introduces a symmetric, density independent migration between 

the two patches? In the extreme case where the migration is much faster than any other 

process in the system, both populations are well mixed. In the absence of self-interactions, 

[see discussion of the "hydrodynamic limit" in  (30)] one may consider both patches as a 

single colony with typical occupancy which is twice as much as a single patch. This increase 

of the effective population leads to an increase in the sustainability of the system. If the 

dynamic is extinction robust and the persistence time of a single patch is )exp( Kt , the 

well mixed system will survive until )2exp( Kt , i.e., the persistence time is growing 

exponentially. On the other hand, if the system is in the extinction prone regime, its 

persistence time would grow with the effective population size but the growth is much 

slower.    

Another migration-dependent effect may take place when the local dynamics are varying in 

time (i.e., have some internally driven variations, periodic or oscillatory, either in a regular or 

in an erratic/chaotic way). In that case subpopulations oscillate between large and small 

abundance. As we mentioned above, the chance of extinction is usually determined by the 

lowest level (infimum) of the population size along time. If the dynamics of the two patches 

is incoherent its neighbors may supply immigrants when the local population is in danger. 

Even better situation (43, 44) is that of negatively correlated spatial dynamics 

(checkerboard), when a decrease of the population on one patch is accompanied by an 
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increase on the other patch. This scenario occurs at intermediate levels of migration and 

depends on the existence of constant perturbations or intrinsic noise that avoid global 

synchronization (45, 46). The loss of spatial synchrony  may even lead to the appearance of a 

new attractive orbit that does not exist in the single-patch dynamics: a phenomenon that 

was discovered in the context of coupled lattice maps (47, 48) and then was observed in 

some ecological models (49-51).  An increased stability in incoherent coupled systems has 

been demonstrated also for a wide variety of stochastic models (11, 43-46).  

Decoherence stabilization of this kind may take effect only in the intermediate migration 

regime. When the rate of individual transfer is too strong the system becomes coherent and 

the stabilizing effect of decoherence is lost. Accordingly there are two scenarios: if the 

buffering effect is stronger, an increase in the migration rates or the connectivity of the 

system always helps to decrease the chance of extinction (21). On the other hand when the 

coherence effect is stronger the chance of extinction is minimal at some intermediate level 

of migration, and a further mixing between colonies is harmful.  In the first case the 

persistence is an ever increasing function of the migration rate and in the second case there 

is a typical bell (hump) shape of the persistent vs. migration curve, as depicted in Fig. 3.  

Clearly the role of decoherence stability is more important when the local dynamics is 

extinction prone since in this regime the buffering effect is much smaller.   

In practice, most of the conservation efforts have to do with eco-communities that are 

locally extinction prone.  If an isolated community is unstable, the persistence of the 

population depends on immigrants from nearby local communities. One of the common 

assumptions is that an increased rate of migration or an improvement in the connectivity 

among patches is good for the system persistence (52).  However, as pointed out by (10), 

this intuitive argument may be misleading: communities may go extinct as a result of 

increased movement that induces coherence and exposes the metapopulation to the danger 

of regional-scale death. In the last two sections we have identified the dangerous zone: the 

regime of parameters where the system is extinction prone and the local dynamics is time 

varying.  In the next section we consider the stochastic patch occupancy model (SPOM), and 

show why it cannot predict the coherence mediated regional extinction. 

 

3. SPOM and the two-state approximation: 
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One of the main goals of ecological modeling and the analysis of extinction probabilities is 

the ability to predict, or to evaluate the chance for extinction, based on data collected in 

field studies.  However, for many types of plants and animals it is very hard to collect 

accurate and long datasets about the number of individuals per habitat patch through time.  

For that reason, experts have developed the stochastic patch occupancy model and the 

inference techniques, like SPOMSIM, that are based on it. To analyze the dynamics of a 

metapopulation using this model one needs only presence/absence data. This, together with 

some general assumptions about the relations between local persistence, patch area and 

connectivity, allows one to calculate the expected time to extinction with reasonable 

accuracy.  

SPOM characterizes a habitat patch as either empty or occupied, i.e., it neglects the intra-

patch dynamics. Except for the colonization (settlement) and the extinction stages, the 

population is assumed to be more or less fixed. This assumption may be justified if 

colonization and extermination both happen during short time scales, i.e., after a successful 

colonization the local community reaches its carrying capacity quite fast, and extinction 

happens due to large fluctuations that, again, occur during a relatively short period. If this is 

true one can implement the two-state approximation: the system jumps quite rapidly from 

the empty to the occupied state and vice versa, and spends its "occupied" phase fluctuating 

around its carrying capacity.  In figure 4, this property is demonstrated for a stochastic-

logistic growth; indeed the typical occupation (sojourn) time is much larger than the 

settlement/extinction periods.  

To obtain a quantitative measure for this separation of timescales for stochastic models, we 

can define the settlement time 1 as the period between the colonization (introduction of 

the first immigrant, or the first pair of immigrants for sexually reproducing animals, on an 

empty patch) and the time when the population first exceeds the carrying capacity K. The 

extinction period 2 is, correspondingly the time elapsed between the last crossing of K and 

complete extinction. If  is the overall lifetime of the colony (from colonization to full 

extinction),  

(6) 


 21 f   

measures the fraction of the settlement + extinction stages compared to the overall lifetime. 

When  f<<1  there is a clear separation of timescales; when f  is close to one there is no such 

separation and the intra-patch dynamic is important.  In the inset of Fig. 5 one can see a 
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histogram of f values gathered from many numerical experiments for the stochastic-logistic 

dynamics in the extinction-robust regime; the f values are definitely small.  

This approximation works very well for extinction robust system, but for extinction-prone 

scenarios its applicability is questionable, as demonstrated in Fig 5 (main panel).  Here there 

is no clear separation of timescales, and the negligence of the intra-patch dynamics becomes 

questionable. The separation of timescales and the neglectance of the intra-patch dynamics 

in SPOM (see Figure 7) are very good approximations for local dynamics that admit an 

equilibrium population (not time-varying)  and are extinction-robust. Effects of decoherence 

are important in the opposite regime: when the local dynamics is time varying and 

extinction-prone.  As a result,   SPOM cannot detect or predict the effects of coherence, and 

in particular it always predicts that increased migration/connectivity will enhance the eco 

community persistence.  The situation is summarized in Table 1.  

Fig. 6 depicts the average time to extinction, as obtained from an individual based model 

(see next section for details), versus the migration rate for different connectivity matrices. 

The typical bell-shape of this curve indicates that the lifetime first increases with migration, 

reflecting the stabilizing buffering effect, then decays at large rates of migration, as the 

effect of coherence becomes important.  Moreover, keeping the migration at the same level 

and increasing the connectivity leads to a sharp decrease in the system persistence time for 

intermediate rates of migration.  Before constructing a corridor between the corners of the 

square one would like to be sure that the system is not on the intermediate/large migration 

rate regime, where such an intervention may cause only harm. In the next section we 

present the simple individual based model we have implemented in this simulation, and 

then will show how to detect the coherence effects using occupancy data.   

 

4. The individual based model  

To study the capabilities and the limitations of the two-state 

approximation implemented in SPOM, a comparison is made 

between its results and simulations of individual based dynamics. 

We have used a simple island model (see illustration, right), 

assuming a population dynamics with non-overlapping 

generations. In the spirit of the Hamilton-May model (24),  each 

generation involves two consecutive steps. The ‘‘local reaction’’ (birth, death, competition 
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etc., at which any patch is affected only by the local population), is followed by a density 

independent ‘‘migration’’ (dispersal) step, where individuals are allowed, with a certain 

probability, to leave their local community and migrate to another patch. There is no 

dispersal cost and any emigrant reaches its chosen destination. The details of our numerical 

algorithm are given in (43, 44).   

Another simplification we have made is that all patches have the same area (or carrying 

capacity K).  This does not makes a lot of difference, since for the randomly scattered spatial 

patterns considered below (see Fig. 7), as nearby patches with high migration rate between 

them may be considered as a single, large habitat.   

For the sake of convenience we have chosen a local dynamics that follows (on average) the 

Ricker map,   ttt xrxx  1exp1  (53). This map is widely used in ecological modeling, and 

is easy to simulate as (unlike the logistic map) there is no upper bound to the number of 

individuals and the map is smooth. The deterministic map supports either attractive orbit or 

chaotic trajectories, depending on the basic reproductive rate r. Adding demographic 

stochasticity to the map, it may be either in the extinction prone or in the extinction robust 

phase, depending on the occupation numbers, as explained above.  

For the spatial system a two-step algorithm was implemented.  Before the reaction step, the 

number of animals on the i-th site is tin , . Each of these individuals produces s offspring and 

dies. The chance of an offspring to survive competition and to reach maturity is 

(7) 

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The overall number of surviving offspring 1, tin   is taken from a binomial distribution, i.e., 

the chance to have  1, tin  successes in   tisn .  trials with a probability p of succeed in any 

specific trial.  The expected number of surviving offspring that reach maturity is  
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The local dynamics is thus equivalent, on average,  to the Ricker map   ttt xrxx  1exp1   

with the rescaled parameters r=ln(s), x = sn/K.  This map is chaotic for r>2.6924.   

After this reaction step comes a passive migration step: any mature animal may decide to 

stay at its local habitat patch with probability 1-, or to immigrate with probability Upon 

migration it chooses its destination at random from all other patches with a probability that 

decays exponentially with the distance, or, in other simulations, it chooses its destination 

among all patches with equal probability. The algorithm repeatedly iterated this reaction-

migration process.  

As demonstrated in Figs. 3 and 6, the effect of decoherence on the sustainability is 

prominent in the individual based simulations, but the retrieval of the model and its 

parameters from the noisy field (or even experimental data) is an intricate task.  One would 

like to have a tool that tells about the relative importance of decoherence to stability, a tool 

that utilizes presence/absence data only and is independent of the specific features of the 

underlying population dynamics. This tool is presented in the next section.     

 

5. Identification of coherence effects with presence/absence data.   

 

Running the individual based model for a while, we gathered the series tin , : the population 

on the n-th site at time t. We are using this set of result as a simulated data to be analyzed 

by SPOM. First, we replace tin ,  by a presence/absence timeseries ti ,  where 

(9) 









0if0

0if1

,

,

,

ti

ti

ti
n

n
 .  

See Fig. 7 where this binarization process is illustrated.   For each site i at time t we have 

calculated also the connectivity  

(10) 
j

jitji mtS ,,)(  ,  

where )exp( ,, jiji dm  .  jim ,  is the probability that an individual from j will immigrate to 

i, jid ,  is the distance between the i-th and the j-th sites and    is the parameter that 

determines the typical distance traveled in a single migration event. 
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Monitoring the system along time we have a set of    and S   for any site and any time. We 

then mapped the dynamics into a memory-less, two-state Markov process. Such a process is 

defined by the parameters )01( SP   and   )10( SP  , the extinction and colonization 

probabilities given the connectivity of a patch.  For a given S we have estimated   

)01( SP   by the number of extinction events observed for an occupied patch with 

connectivity S, divided by the total number of occupied sites with connectivity S.  

)10( SP   is, correspondingly, the estimated chance of colonization given S.  

One of the fundamental assumptions of SPOM is about the relations between the 

extinction/colonization probabilities and the connectivity S. The authors of (2) have 

suggested a few possible expressions for these relations. For example, one of the 

possibilities mentioned is: 

(11)  .,1min)01(1)10( xSyS eSPeSP      

 

Anyhow, all the expressions suggested presume that the dependence of the 

extinction/recolonization probabilities on S is monotonic: increasing the connectivity always 

increases the number of recolonization events and decreases the chance of extinction. Given 

this assumption, one should expect that the lifetime of the system grows when it becomes 

more connected: in particular the time to extinction must decrease with an increase of the 

migration rates, or when new corridors enhance the connectivity among patches. As we 

have demonstrated above (see Figs. 3 and 6) this is not the case for extinction prone and 

varying dynamics in the intermediate/high migration rate regime. In this case, when a 

system becomes more connected, nearby patches start to fluctuate coherently. As a result 

they all reach the low-density state at the same time, exposing the whole region to the 

danger of correlated extinction.  

This effect manifests itself in Fig. 8. Here the dependence of the transition rates on the 

connectivity, as obtained from the individual-based simulation described above, is plotted 

against the connectivity S for two scenarios. In both cases the Ricker map has been 

implemented in the extinction-prone parameter regime, with a spatial structure that is 

statistically identical to the one presented in Fig. 7.  To get smooth lines of P  vs. S we have 

to average over many spatial configurations, as in one set of 25 patches the number of 
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possible connectivities is limited, but the general trend – decay or growth with S – may be 

identified even for a single realization.  

In the first numerical experiment we have chosen the number of offspring s such that the 

corresponding deterministic Ricker map admits an equilibrium stable fixed point (period-1 

orbit, as in Fig. 0, upper panels).  The second set of simulations have used the same 

"geography" (identical statistical properties for the spatial arrangement of patches), but now 

with s that corresponds to a chaotic trajectory.    

In the first case the intra-patch dynamics allows no variations in time, thus there is no effect 

of decoherence stabilization. Accordingly, migration is always a stabilizing factor: the chance 

of extinction is decaying monotonically with the connectivity and the chance of 

recolonization is always growing with S.  The functional dependence is not exactly the one 

suggested in (11), but the general trend is identical. 

If, on the other hand, the local dynamics are varying in time, above some level of migration 

the dependence of the extinction rate on S becomes nonmonotonic, or even reverses its 

direction. The reason, again, is that the large S events are usually related to a few nearby 

patches that fluctuate coherently and go extinct together when the migration rate is large.  

We have verified that this phenomenon is robust and appears also in the presence of 

spatially correlated environmental fluctuations (Moran effect) (54)   

This feature may be used also as a diagnostic tool.  Given a time series of  ti ,  and the 

distance matrix jid ,  one can retrieve )01( SP   for some values of S. An observation of an 

increase of the extinction rate with S is an indication for the danger of regional extinction as 

nearby patches synchronize.    

Although we do not present here a predictive technique that analyze a time series and 

calculates the chance of extinction, we can suggest a simple rule of thumb:  if overcoherence 

is detected in the system, it is usually very easy to identify the synchronized subpopulations.  

Given that, it is recommended to construct conservation corridors somewhere else, and 

maybe it will be even useful to try to decrease the migration rate among these local 

habitats.  
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6.  Discussion and Conclusions: 

 

Throughout this paper we have tried to classify population dynamics models with respect to 

two important features of the local dynamics: the chance of extinction due to noise and 

fluctuations (extinction prone/robust), and the time evolution on the attractive manifold 

(equilibrium/varying in time).  The chance of extinction in general is determined by two 

factors: one is the lowest (infimum) occupancy number encountered by the whole system 

along time and the other is the magnitude of fluctuations in the population size when the 

density is small.  

An increase in the connectivity or the migration rate in a spatially extended system allows 

for recruitment of empty patches and is followed by a decrease in the amplitude of 

demographic fluctuations, as it increases the effective subpopulation size.  This buffering 

effect makes the system less vulnerable to extinction events. On the other hand such an 

increased movement may lower the infimum occupancy as it induces coherence among 

patches. Thus, in varying systems it may be a destabilizing factor.  The competition between 

buffering and coherence effects determines whether or not an increased movement (or  

connectivity) increases the lifetime of the system. In particular, when the dynamics is 

extinction prone (the population size is small in comparison with the fluctuations, as 

expressed by the standard deviation ) the buffering effect is much weaker and there is a 

good chance that coherence effects are more important.  

SPOM neglects the intra-patch dynamics, thus it may take into account only the buffering 

effects. As a result, within the SPOM framework sustainability always grow with migration. 

This outlook turns void in the extinction prone – varying regime, where the increase of 

spatial coherence may lead to the opposite behavior.   We have demonstrated that by 

implementing agent-based models and comparing the effects of SPOM with the results 

obtained from these models for metapopulation persistence time.  

 

Clearly, in any practical scenario it will be very hard to infer the "microscopic" parameters of 

dynamics, like birth/death rates and competition/predation parameters, from the field data. 

In the laboratory one may try to use recurrence plots [see (15) for example] but  the 

inaccuracy of the measurements of population size, together with the  effects of migration 

and external noise, make this mission almost impossible for subpopulations in the wild.   To 
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overcome this difficulty we have suggested here a technique that is based on the same 

presence/absence data used by SPOM. In the extinction robust, or for non-varying local 

dynamics, one would like to find if an increase in the connectivity of a patch is followed by a 

decrease of the chance of extinction. If this is not the case, it implies that coherence effects 

are important and the system may be on the brink of regional extinction: the common 

intuition of conservation ecologists turns upside-down; fragmentation increases the 

sustainability while corridors may cause harm.   

Interestingly, the evolution of dispersal rates does not converge to an optimal solution. Our 

numerical experiments with Hamilton-May setup (24) – two species that differ only in their 

migration rate are competing – ended up with the victory of the "fast" species, even if the 

lifetime that corresponds to the higher level of migration was shorter. This implies that, in 

the coherence dominate regime, one should not assume that the natural state is somehow 

close to the optimum as it reflects the adaptation of dispersal rates along time.  

Beyond its importance to sustainability assessment and management, there is a general 

theoretical interest in the identification of coherence effects in field data, after they have 

already confirmed in experiments (12-18). Again, we hope that our technique may be used 

for this purpose, with patch occupancy data that have been already collected or will be 

collected in the future.   
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Appendix A 
 

In this appendix we will show how to use an elementary moment truncation scheme in order 

to find the boundary between the extinction robust and the extinction prone regimes. The 

example studied here is the stochastic logistic growth process described in  Eq. (2) above. 

For this process some analytic results are known and may be compared to our scheme. It is 

quite easy to generalize the qualitative part of the consideration presented here to many 

other models of population dynamics. 

 

We begin with the exact master equation (3). From this we can derive an exact equation for 

the time evolution of the first moment, which is Eq. (4) above, but this equation involves the 

second  moment     )(2 tn . The time evolution of the second moment is: 

(A1)      nnnnnnn  2322
2

2222
dt

nd
   

This equation depends on the third moment of n. However, if K is large enough the Pn is 

almost a perfect Gaussian around K, so the skewness    3nn  is negligible.  Plugging 

(A2) ,23 323 nnnn    

 

one obtains 

(A3)   .64)422(2
dt

nd 232
2

nnnnn     

  

Eq. (A3) and (4) are now a closed set of nonlinear equations from which the standard 

deviation of the Gaussian, ,22 nn   may be extracted.  Expressing the results in terms 

of K, the carrying capacity, and r, the Lyapunov exponent, one finds that for large K-s 

(A4) .
2

2
K

r

r
   
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Accordingly, the transition from the extinction prone to the extinction robust regime 

happens at 

(A5)   .2 rrKc    

In (55) the authors have used a much more sophisticated WKB technique in order to 

evaluate the extinction times, and this birth-death-competition model is considered in the 

third section.  In the WKB language the chance of extinction is given by the "action" S (the 

assumption is that S is large), and the theory breaks down in the extinction prone regime 

which occurs when S=1. With the parameterization used here, the WKB analysis of (55)  

predicts a transition for   

(A6) 
 
 

.
)2(2/1ln

2/3)2(2/1ln
,

rrr

rrr
K WKBc




   

To the first order in r (A5) and (A6) coincides, and all over the relevant region 0<r<1 the 

difference never exceeds 12%.  
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Figure 0 

 

 

 

Four representative scenarios of the noisy dynamics of an isolated population. All panels 

show population number (an integer) vs. time (arbitrary units).  In panel (a) we have 

simulated the logistic map in the regime where it supports an attractive fixed point (r=2) and 

with carrying capacity K that allows for approximately  250 individuals. Simulating the 

system with demographic noise (see section 4 for the details of the numerical procedure)  

we obtain a faked dataset for 100 seasons (green circles). When we smear out fluctuations 

using Matlab's cubic smoothing spline (csaps) the red line, which reflects the trends 

associated with the deterministic dynamics, emerged.  Panel (b) shows the same for carrying 

capacity of about 15.  The system (b) is extinction prone: the width of fluctuations is 

comparable with the steady state population, thus the time to extinction is relatively low. (a) 

is extinction robust: the fluctuations are small relative to the steady state population, to 

reach extinction one should wait for giant fluctuation that never happens on reasonable 

timescales. Panels (c) and (d) were generated in the same way, now using the deterministic 

Lotka-Volterra equations that generate internal population cycling (the predator population 

is shown). What determines not the chance of extinction is the strength of the fluctuations 

when the system reaches its lower population states (note that, incidentally, here the 

fluctuations are stronger close to the extreme values of the trajectory). While (c) imitates a 

time-varying extinction robust system, (d) is extinction prone.  
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Figure 1 

 

The transition from the extinction prone to the robust regime. We have simulated the 

dynamics of an isolated population subject to  the stochastic processes   A2A 

0A   and 0AA  
, using the  Gillespie  individual based algorithm (56).  One of 

the parameters determines the overall timescale, and the two others determine the carrying 

capacity     K  and the Lyapunov exponent  r .  A single run 

starts with Ktn  )0( individuals, and stops when the population goes extinct due to 

demographic fluctuations.  Here the average time to extinction  versus the carrying capacity 

K for different values of the Lyapunov exponent r, both in logarithmic (main figure) and in 

normal (inset) scale. For large K the lifetime grows exponentially with K (straight line in the 

log scale, main): this is the extinction prone regime. For small K, on the other hand, the 

growth is slower than exponential (inset). The transition from the extinction prone to the 

extinction robust (exponential) regime appears at larger K values for smaller Lyapunov 

exponent r.     
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Figure 2 

 

Various prototypes of the deterministic dynamics. The logistic map,  ttt xrxx  11 , 

supports an attractive, period one  orbit for  small r, as seen in the bifurcation diagram in 

panel (a).  For the value of r indicated by the red arrow, the deterministic dynamics supports 

an attractive fixed point: starting from a small value of x the population grows and saturates 

[panel (b)]. In this range of parameter the stochastic dynamics may be either extinction 

prone or extinction robust, depending on the actual number of individuals associated with 

the steady state.  As there are no time variations in the population size, coherence along 

spatial domains plays no role.  For higher values of r the system supports more complicated 

attractive orbits and even chaotic trajectories. For these parameters also the dynamic may 

be either extinction prone or extinction robust, but now the population varies along time 

and spatial coherence effects may become important.   For r=4 (green arrow) the system is 

always extinction prone as the infimum of the deterministic trajectory is zero, as depicted in 

panel (c).  Another example of deterministic dynamics that is always extinction prone is 

provided by  the Nicholson-Bailey host parasitoid model 

 tt P

tt

P

tt eqHPecHH
 





  111  

that supports ever growing oscillations, see panel (d).    
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Figure 3 

 

Time to extinction for two-patch system with stable (green) and varying (red) intra-patch 

dynamics.  An agent based process that corresponds to the  Ricker map (see section 4 for 

details) was simulated on each patch, where the value of s (the number of offspring per 

individual) corresponds to the regime when the map supports an attractive fixed point (r = 

0.69, green arrow) or an attractive period-2 orbit (r = 2.48, red arrow), as indicated on the 

bifurcation diagram (a).   The time to extinction for a local community is a monotonic 

increasing function of the carrying capacity K, as indicated in panel (b). However, when the 

rate of individual transfer between patches, , is varied, the lifetime grows monotonically for 

the stable dynamics (panel c, green, K=4) but shows the typical bell-shape for the two-state 

system (panel c, red, K=15). In a time-varying intra-patch dynamics the stability depends 

very much on the level of decoherence between the two patches. When the migration rate 

is large the two patches synchronize and reach the low population state at the same time, 

increasing the risk that both of them go extinct simultaneously.     
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Figure 4 

 

 

A typical turnover event for a single patch with extinction robust intra-patch dynamics. 

When the first immigrant arrives, a colony is established (reaches the carrying capacity, red 

line) on a short timescale. This colony persists for a relatively long time, until an extinction 

event happens, again quite rapidly. The figure here shows the results for the stochastic-

logistic process (Eq. 2).  Run starts with one individual, and ends up when there are no 

animals anymore. We have used the parameters  = 1, r = 0.99 and K=15. The average 

number of agents, X, satisfies the logistic equation (1), where K sets the typical number of 

agents during the stable period. Note that the green points reflect a running average over 

small intervals of time; in reality the fluctuations induced by demographic stochasticity 

around the stable state are larger and faster  for this K.    
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Figure 5 

 

A histogram showing the probability that the system spends a fraction f of its lifetime in the 

settlement and extinction stages (as defined in Eq. 6).  The histogram showing the frequency 

of f values  for the stochastic-logistic model with K=15, all runs start with one individual. The 

inset shows the resulting distribution for r=0.99, while the main figure is for r=0.01 (note 

that one can change the rates of the stochastic process (2) and vary r while keeping the 

carrying capacity fixed). Runs for which the system went extinct before reaching K 

(colonization failure) were omitted from the statistics.  For the r=0.99 case (inset) the 

population dynamics was exemplified in Fig.  4, and indeed one observes that the 

colonization and extinction times are both much shorter than the sojourn time when the 

population fluctuates close to its carrying capacity. This is not true anymore when  r = 0.01: 

although the carrying capacity remains the same, it is much less "attractive" and fluctuations 

are larger.          
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   Figure 6 

 

Persistence time of a metapopulation with extinction prone local patch dynamics. Shown 

here is the average time to extinction for a four patch system, with ring (red circles, blue 

dashed line) and global (grey circles, green line) connectivity. The individual based 

simulation procedure is described in the methods section.  For small migration rates  the 

lifetime of the system increases with the migration since it allows for recolonization and 

avoids the accumulation of local extinctions. On the other hand above =0.07 migration 

becomes a destabilizing factor, as it leads to overall coherence among patches and to global 

extinction. This leads to the hump shape that characterizes the lifetime vs. migration curve. 

Increasing the connectivity without changing the migration rate (global migration, grey) 

makes the system less sustainable for intermediate and high migration rates. The 

simulations were carried out for the stochastic Ricker dynamics with K=12 and s=17.  
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   Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPOM vs. IBM: an illustration of distinct habitat patches for 25 randomly allocated patches. 

The left panel shows a snapshot of the metapopulation where the color indicate the local 

population density: darker color stands for densely populated patch, while diluted populated 

patch marked by light colors. The right panel shows the same snapshot from SPOM point of 

view where black color present occupied patches and white is an empty one. 
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   Figure 8 

 

The chance of extinction, )01( P , and recolonization, )10( P , for  a local community 

as a function of the connectivity S in the extinction prone regime for equilibrium (left) and 

time varying (right) dynamics. The individual based model of section 4 has been utilized with 

the Ricker map with r = 1.79 (equilibrium, attractive fixed point) and r = 2.8 (chaotic regime). 

Simulation was performed with different levels of migration, from weak (=0.2, red circles) 

to strong (=0.3, light blue triangles), according to the migration procedure explained in the 

text.  The spatial arrangement of patches is the one shown in Fig. 7.  When the intra-patch 

dynamics admits equilibrium value )01( P  decreases with the connectivity as expected. 

On the other hand for time varying local dynamics the chance of extinction may grow with S, 

at least for large migration rates. This nonmonotonic behavior indicates that the stability of 

the system depends on decoherence among local communities, and that an increase in the 

connectivity of the system may be harmful.    

  



31 
 

Table 1 

 
Buffering effect 

                 (see  section 1) 

 

 

Coherence effects  

(see section 2) 

Extinction robust 

Strong buffering effect 

Extinction prone 

Weak buffering effect 

 

Equilibrium 

Occupied patches are more or 

less at the same state, up to 

fluctuations.   

One equilibrium state. Clear 

separation of timescale, f<<1. 

Fits the assumptions of SPOM.  

   , no separation of 

timescales, but coherence 

effects are not important. 

SPOM still applicable (Fig 8, 

left)    

Time-varying 

Incoherence may improve  for 

sustainability 

Intra-patch dynamics is 

nontrivial. The two-state 

approximation may become 

problematic. Buffering effect is 

large.    

Regional extinction zone: 

Buffering effect is small, 

Spatial incoherence may 

become a crucial stabilizing 

factor. SPOM may fail (fig 8, 

right) 

  
A table showing the different regimes discusses along this paper, categorized according to 

the local dynamics (each box is refers to its corresponding panel of Figure 0). In section 1 

these dynamics were classified according to the buffering effect, i.e., the dependence of the 

persistence time on the carrying capacity: in the extinction robust regime this dependence is 

exponential and the buffering effect is very strong, while in the extinction-prone case this 

effect is much weaker. The distinction between equilibrium and time-varying systems is 

emphasized in section 2; in time-varying dynamics regional extinction may appear if all 

patches oscillate coherently and reach the infimum population at the same time.  The 

analysis suggested by SPOM is based on the assumption that the dynamics may be projected 

on a two-state (empty/occupied) for each local community, so it fits perfectly the robust-

equilibrium regime. However our numeric shows that  SPOM works also for extinction prone 

regime as long as the local dynamics has equilibrium density, and may fail only for 

extinction-prone /time varying systems.     
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