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The dynamics of a local community of competing species with weak immigration from a static
regional pool is studied. Implementing the generalized competitive Lotka-Volterra model with de-
mographic noise, a rich dynamics structure with four qualitatively distinct phases is unfolded. When
the overall interspecies competition is weak, the island species are a sample of the mainland species.
For higher values of the competition parameter the system still admit an equilibrium community,
but now some of the mainland species are absent on the island. Further increase in competition leads
to an intermittent ”chaotic” phase, where the dynamics is controlled by invadable combinations of
species and the turnover rate is governed by the migration. Finally, the strong competition phase
is glassy, dominated by uninvadable state and noise-induced transitions. Our model contains, as a
spatial case, the celebrated neutral island theories of Wilson-MacArthur and Hubbell. Moreover, we
show that slight deviations from perfect neutrality may lead to each of the phases, as the Hubbell
point appears to be quadracritical.

PACS numbers: 87.10.Mn,87.23.Cc,64.60.Ht,05.40.Ca

INTRODUCTION

Trying to characterize and quantify the factors that
govern the dynamics of natural populations, community
ecologists were often surprised by the large number of
competing species that can be found in a relatively small
area. Having in mind the Darwinian picture of natural
selection and the survival of the fittest, one may expect
that a few fittest species will dominate the community
(perhaps with some sporadic presence of a few individ-
uals of inferior species) as suggested by the competitive
exclusion principle [1]. This is definitely not the case
in many important communities, from tropical forests to
coral reef to freshwater plankton. In fact, an understand-
ing of the factors that allow the maintenance of biodiver-
sity under selective dynamics is considered as one of the
most important challenges for modern science [2].

One of the versions of the biodiversity puzzle has to
do with a local community which is coupled by migra-
tion to a regional pool. The simplest example for this
scenario is the mainland-island system, where the main-
land dynamics is assumed to be relatively slow so one can
assume that the island is interacting with (i.e., receiving
immigration from) a static pool on the mainland. This
mainland-island model may describe any local commu-
nity, provided that the length scale involved in biological
interactions (e.g., competition) is much smaller than the
migration scale [3].

In general, the dynamics of natural ecological commu-
nities is subject to substantial noise. Populations are ex-
posed to environmental variations that affect their repro-
ductive ability and death rate. This effect is, typically,
quite strong [4, 5]. Even under strictly fixed environ-
mental conditions the stochasticity of the birth-death-
migration process (demographic stochasticity) adds ran-
domness to the dynamics. Under demographic noise, ev-
ery finite population goes extinct eventually, so theories

of community dynamics must include a stabilizing mech-
anism that makes these extinctions extremely rare (stable
coexistence) or allow for a speciation process to maintain
the species richness (unstable coexistence).

The mainland-island system incorporates features from
both scenarios. On the one hand, in a local community
there are at least a few extinction-prone low-abundance
species. One the other hand, there are no absorbing
states in the strict sense, as individuals of any species ar-
rive at a fixed average rate from the mainland. Neverthe-
less, if the migration is relatively weak and the local pop-
ulation is not huge, some or perhaps all of the species may
undergo temporary extinctions, leaving the island with-
out this species until the next individual of this species ar-
rives from the mainland and manages to reestablish. The
statistics of these local extinction-recolonization events
for birds in North America was recently analyzed by [6],
below we will consider the relations between our model
and their empirical results.

Community dynamics theories are usually classified
along the line between niche and neutral. A niche the-
ory assumes that every species that have a non-sporadic
presence on the island has its own niche. For example,
a few bird species each having a different beak size and
(correspondingly) different diet may coexist on the island
if the overlap between the niches is not too large. In the
other extreme, in a perfectly neutral dynamics there is
no niche partitioning at all, all species are using the same
resources with the same efficiency, and the dynamics is
governed solely by stochasticity. In between one can find
a few ”continuum models” [7–10] that were suggested in
the last decade and incorporate elements of neutral dy-
namics with (usually weak) selective effects.

The simplest model for island dynamics is the gen-
eralized competitive Lotka-Volterra model (GCLV) with
migration. This model is widely used in ecology and for
other applications [11–13]. It turns out that the model
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has a very rich structure. Our primary focus is on an
individual based stochastic version of the model which
incorporates demographic noise. We will see that the
model, despite its simplicity, is very rich and exhibits a
wide range of different behaviors. Our goal here is to
exhibit this panoply of “phases” and understand their
origins. A parallel study of the much more tractable
deterministic version of the model will be a key tool in
unraveling the dynamics.

In particular, we shall show below that the most cel-
ebrated models of island biogeography - the Wilson-
MacArthur theory of island biogeography [14, 15] and
Hubbell’s neutral theory of biodiversity [16, 17] are two
special cases of this model. Following a few recent pub-
lications that emphasized some specific aspects of the
dynamics [18, 19], we would like to show how the phase
structure of the model is governed to a large extent by
these two special limits. Finally, we will consider the
relevance of this model to the empirical findings.

THE STOCHASTIC GCLV MODEL

In this section we introduce our model and set nota-
tion. Let us consider a regional pool of Q species on
the mainland. Each individual of these species may im-
migrate to the island with a certain probability per unit
time, and we denote the average rate at which individuals
of the ith species reach the island as λi.

Denoting by Ni the abundance of the ith species on the
island, the deterministic part of the dynamics satisfies

Ṅi = λi + αiNi −
Ni
Ki

Ni +
∑
j 6=i

di,jNj

 . (1)

Here αi is the growth rate of the i-th species on the island,
and Ki sets the carrying capacity of the i-th species in the
absence of competition with other species. Interspecific
interactions are expressed by the elements of the matrix
di,j . Here we study a purely competitive system where
all the di,j ≥ 0.

As our goal is to identify the different phases of this
model, not to fit it to a specific empirical system, we
make a few simplifications. First, we assume (as in [20],
for example) that all species have the same flux of immi-
grants from the mainland, λi = λ, the same linear growth
rate that we scale to one (αi = 1) and the same carrying
capacity K. We are interested here specifically in small
values of λ, so that immigration primarily serves to “res-
cue” extinct species, but does not swamp the intrinsic
competitive dynamics on the island. The interaction ma-
trix takes the form di,j = Cci,j , where C sets the overall
strength of the interaction and the ci,j-s are normalized
such that ∑

i 6=j

ci,j = Q(Q− 1) (2)

In other words, the average magnitude of a ci,j is unity.
We consider here the case where the ci,j are chosen ran-
domly from a distribution with unit mean and variance
σ2; the ci,j values are kept fixed throughout the process.
The current work considers the case of purely competi-
tive community without symbiosis or food web features.
Accordingly, we do consider here the case of interaction
matrices with a modular or nested structure. As we shall
show be, this structureless matrix provides a natural gen-
eralization of the Hubbell neutral theory [16]. For our
simulations, the ci,j were chosen from a Gamma distri-
bution with probability distribution function

P (c) =
c1/σ

2−1σ−2/σ
2

ec/σ
2

Γ(1/σ2)
(3)

The final form of our GCLV model is then

Ṅi = λ+Ni −
Ni
K

Ni + C
∑
j 6=i

ci,jNj

 . (4)

For small immigration rate λ, extinctions and recolo-
nizations play a crucial role in the dynamics. We treat
this by constructing a stochastic individual based ver-
sion of the model, so that demographic noise is explicitly
included. The number of individuals in each species is
an integer. At each time step, of duration ∆, a Pois-
son number of immigrants of each species, with mean
λ∆, is generated. A Poisson number of offspring of each
species, with mean Ni∆, is generated as well. The Ni
veteran inhabitants are subject to death, with the num-
ber of individuals of species i that expire drawn from a
binomial distribution with parameters Ni and probabil-
ity ∆

∑
j(δi,j + Cci,j)Nj . Clearly, ∆ needs to be chosen

to be sufficiently small that this probability does not ex-
ceed unity. The number of individuals of species i after
this process is then updated to reflect the new immi-
grants, offspring and deaths. On average, these changes
are exactly those given by the deterministic model.

The stochastic model is specified by four parameters:
K, λ, C and σ. In what follows we will focus our atten-
tion on the phases in the σ−C plane, keeping K and the
migration rate fixed. Once this behavior is understood
it is straightforward to figure out at least the qualitative
features of the dynamics for other values of migration and
K. The different phases in the σ −C plane are sketched
in Figure 1. In the following we intend to discuss each
phase in detail; before doing that, let us focus on two
very interesting limits that correspond to the x and the
y axes of Figure 1.

THE WILSON-MACARTHUR LINE, C = 0

When C = 0, species do not interact with each other
and the dynamics of each species is logistic with car-
rying capacity K. Deterministically, an infinitesimally
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FIG. 1. A schematic sketch of the C − σ2 plane, showing the
different phases of the generalized competitive Lotka-Volterra
system, as will be discussed below. On the C = 0 line there
is no competition, all species have the same carrying capac-
ity and the extinction-recolonization dynamics is described by
the Wilson-MacArthur theory. At the Hubbell point, C = 1
and σ = 0, all individuals are equivalent and the system sup-
ports a marginally stable manifold on which the dynamics
is governs only by the noise. In the weak competition re-
gion (small C) all the mainland species are still semi-resident
on the island, but with heterogeneous abundance and extinc-
tion times. Above C2, some species are transients, with Oλ
abundance. Another increase in the strength of competition
takes the system to the chaotic/intermittent phase, where the
community structure changes dramatically over time and the
instantaneous assembly is usually invadable. Finally in the
glass-like phase a few uninvadable equilibria control the sys-
tem and the transitions are noise induced.

small population grows exponentially and then saturates
to the steady state value, K. With demographic noise the
first immigrant may fail to establish a community (e.g.,
it may die before reproduction, even if the birth rate is
larger than the death rate), so not every immigration re-
sults in successful colonization. The chance of a success-
ful colonization depends on the details of the stochastic
process (in particular, the variance in the number of off-
spring per individual, see the analysis of [21] for the SIS
model). After a successful recolonization the population
still fluctuates around K, and in the long run it must go
extinct as well since (without migration) the zero popu-
lation is an absorbing state. The rate of these long-term
extinctions (as opposed to colonization failures that take
place at short times) depends, again, on the details of
the process and the value of K [22].

Accordingly, in the C = 0 limit of our model the his-
tory of every species is made of a series of local extinctions
and recolonization events, and the rates of extinction and
recolonization are equal for all species. What emerges
from this scenario is the celebrated Wilson-MacArthur
model of island biogeography: the species richness on
the island, S, satisfies Ṡ = −eS + r(Q − S), where e is
the extinction rate and r is the recolonization rate, both
rates will depend on K and on the details of the stochas-
tic process. The Wilson-MacArthur prediction for the

average species richness is S̄ = rQ/(r + e), the typical
size of species richness fluctuations is

√
S, and the statis-

tics of sojourn times (the periods between colonization
and extinction, as well as the periods between extinction
and colonization) is exponential.

When the only stochastic effect taken into account
is demographic noise, as is the case in this paper, the
chance of extinction decreases exponentially with K [23]
and therefore for the typical values of K considered here
e � 1. If this is actually the case, or when λ is large so
r →∞, all mainland species are presented on the main-
land up to tiny short-term fluctuations.(S ≈ Q). Ac-
cordingly, in our model one observes Wilson-MacArthur
dynamics on reasonable time scales only when K is rel-
atively small. More realistic models have to take into
account other types of noise (including environmental
variations, attacks by pathogens etc.) that may lead to
extinction, and the Wilson-MacArthur model will then
be relevant even for higher values of K.

THE SYMMETRY LINE AND THE HUBBELL
POINT

On the x axis, the σ = 0 line, species do interact
with each other but the interaction is symmetric; i.e., no
change in community dynamics occurs upon switching
the species labels of any two given populations. C mea-
sures the strength of interspecific competition: if C < 1,
the intraspecific competition is stronger than the inter-
specific (reflecting mechanisms like resource partition-
ing or frequency dependent predation) and a low-density
species may invade the system. On the other hand, for
any C > 1 the intraspecific competition is weaker than
the interspecific, resulting in competitive exclusion [24].
At the boundary between these regimes one finds the
Hubbell point C = 1 (see Figure 1). At the Hubbell point
the model is neutral : any individual competes equally
with any other individual and the strength of each pair
competition is fixed and independent of species affilia-
tion.

Without immigration, the deterministic GCLV sup-
ports, to the left of the Hubbell point, an egalitarian co-
existence stable fixed point where all species are present
on the island with the same abundance K/(1+(Q−1)C),
while above the Hubbell point the stable solution admits
only one species with abundance K, all other species has
zero abundance (the identity of the surviving species is
determined by initial conditions). At the Hubbell point
the deterministic dynamics supports a marginal mani-
fold: every combination of Ni’s such that the total pop-
ulation is K is a solution of Eq. 4. The simplicity of the
GCLV at the Hubbell point allows one to solve analyti-
cally for the species abundance distributions (SAD) even
with demographic noise [25], environmental stochasticity
[26], or a combination of demographic and environmental
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noise [27].

About 15 years ago, Hubbell [16] put forward his very
influential neutral theory of biodiversity, suggesting that
all species and all individuals are demographically equiv-
alent and the only mechanism that drives the system is
pure demographic noise and the (typically slow) rate in
which new species are introduced. Hubbell’s model has
two versions. In the metacommunity version speciation
is the mechanism that leads to the introduction of a new
species, while in the mainland-island version colonizers
of new species arrive from the mainland (assuming large
Q). Some patterns predicted by this neutral theory, and
in particular the species abundance distribution (SAD)
on the island, fit quite nicely those recorded in many
empirical studies.

Off the Hubbell point the infinite degeneracy is lifted,
but the analysis of the stochastic system is still rela-
tively easy since every species may be analyzed indepen-
dently, the effect of all individuals from other species may
be encapsulated into a single parameter. This feature
was exploited by [19] who manage to solve the (meta-
community version) stochastic GCLV analytically along
the σ = 0 line. As expected, below the Hubbell point
the SAD shows a peak around the deterministic value
K/(1 + (Q − 1)C), and the sharpness of this peak in-
creases as C decreases.

AN OVERVIEW OF THE DYNAMICS

We present in Fig. 2 sample runs of the system for
K = 100, λ = 0.01, σ = 0.5, Q = 20, for varying C. The
abundance of each species is indicated by color. The hor-
izontal axis is time, with snapshots of the system taken
every t = 0.08/λ. The vertical axis is species number,
and runs from 1 to Q = 20. It is clear that the system
exhibits very different behavior as C is varied. One can
identify four different generic behaviors, which we shall
call “phases”. Very briefly, in the first, low C, phase all Q
species are present essentially all the time. In the second,
some species are basically no longer present, supported
only by the infrequent stochastic immigration of new in-
dividuals, while the rest have a more or less continuous
existence, with occasional temporary extinctions. The
third phase at yet higher C is the most complicated, with
the system jumping from one state to another. These
states would be stable in the absence of immigration, but
a successful colonization by some specific species drives
the system to a new quasi-stable state. In the last phase,
the system spends a preponderance of time in some sta-
ble state. In the following, we will attempt to explicate in
more detail the various features of each of these phases.

One way to quantify the different behaviors is via the

“inverse participation ratio”, IPR, defined as

IPR ≡

(∑Q
i=1〈Ni〉

)2
∑Q
i=1〈Ni〉2

(5)

The angle brackets refer to an average over time. The
IPR varies from 1 toQ. In the case where only one species
is present, it takes the value unity, and if all species have
equal abundance, its value is Q. Thus, the IPR is a
measure of how many different species are active in the
system. It can differ enormously from the time average
of the instantaneous number of species present. We show
in Fig. 3 the IPR as a function of C for runs with the
same parameters as in Fig. 2. We see that the IPR is not
monotonic in C. It initially decreases from Q, reaches a
minimum and then starts to increase. It then achieves a
local maximum and then starts to decrease again. This
change in behavior of the IPR is clearly reflective of the
different patterns captured in Fig. 2. We shall elaborate
on the behavior of the IPR as we investigate each phase.

PHASE I: THE HETEROGENEOUS
COEXISTENCE PHASE

We start by considering the leftmost region of Fig. 1,
the area where C is relatively small. Increasing C from
zero, at a fixed value of σ, corresponds to an increase of
interspecific competition; for example, different species
of birds that leave happily together, each having a dif-
ferent diet of worms, may start to interact with each
other if the supply of worms is decreased and different
species begin to consume the same resource. In such a
case species-specific niches are “squeezed” towards each
other, increasing the niche overlap.

Once the species start to compete, the heterogeneity
of the ci,j ’s (as reflected in the parameter σ) implies that
some species are impacted by the competition more than
the others. As a result, the abundance Ni of the ith
species is no longer K (as on the Wilson-MacArthur line
C = 0); instead, all abundances are reduced by a species-
dependent amount and one gets a distribution of species
abundance values. Still, as long as C is not too large,
the deterministic dynamics of Eq. (1) supports a single
attractive fixed point that corresponds to the case where
all the Q species of the mainland are represented on the
island. In this case, we can approximate the system by
the λ = 0 system, since the small external flux does not
qualitatively change the steady-state, which in any case
has all species present. Eq. 1 with λ = 0 allows for an
explicit stationary state solution,

Ni = KB−11 (6)

where 1 stands for the length Q column vector consisting
of all one’s, and B is the matrix

Bi,j = δi,j + Cci,j . (7)
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FIG. 2. Snapshots of the abundance for all species in the stochastic model for various levels of competition, C. Red is high
abundance, dark blue low, as shown in the color bar at the right. Q = 20, K = 100, σ = 0.5, λ = 0.01. The time between
snapshots is λt = 0.08.

Figure 4 illustrates the process. For C small enough
that coexistence fixed point solution is physical, such that
all Ni are positive, there is a unique stable solution and
all the Q mainland species will be present on the island.
Their abundances decrease as a function of C, but no
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FIG. 3. The inverse participation ration, IPR, as a function
of C. N = 20, K = 100, σ = 0.5, λ = 0.01.

species goes extinct in the deterministic theory. As long
as this remains true, for reasonably largeK, one can more
or less neglect the noise, given the stability of the fixed
point solution. The species that have lower abundance
are those who suffer more from the competition, and even
if demographic noise drives a few of them to extinction,
the effect on the rest of the network is minor and the
system will restore itself by immigration. This situation
is illustrated by the first panel of Fig. 2, the case C =
0.05, where there are no extinctions seen in the time-
frame shown. Examined over a much longer period, there
are indeed a few occasional extinctions of all the various
species. The most extinction prone species, for example,
was seen to go extinct a total of four times over a period
of 24, 000 snapshots.

In such a scenario one expects deviations from the
Wilson-MacArthur formula. When the abundance of the
species are different from each other, the chance of ex-
tinction e becomes species dependent, so once C > 0
the sojourn times will reflect a convolution of exponents
with different timescales. When the community het-
erogeneity increases, the Wilson-MacArthur extinction-
recolonization dynamics is most relevant for the smaller
species, again with heterogeneous statistics of extinction
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FIG. 4. Abundance vs. competition. The abundance of
Q = 10 species on the island is plotted vs. the competition pa-
rameter C, for a deterministic GCLV model withK = 100 and
σ = 0.5, without immigration (λ = 0). In the non-interacting
limit C = 0 the abundance of all species is identical and
equal to K. At C1 ≈ 0.28 the abundance of the “weakest”
species reaches zero - this is the May transition, where the
system enters the competitive exclusion phase. Upon increas-
ing C, more and more species go extinct until (here, around
C = 0.78) a species comes back to life, as the competitors
that suppressed it were themselves suppressed.

times.

THE MAY TRANSITION AND PHASE II: THE
PARTIAL COEXISTENCE PHASE

As C increases even more, the deterministic dynamics
(without immigration) no longer supports a steady state
with all the Q mainland species coexisting. In the hetero-
geneous coexistence phase, as discussed above, the λ = 0
steady-state system admits a solution, Eq. (6), which is
both feasible (Ni > 0) and stable (the real part of all
the eigenvalues of the community matrix are negative).
As follows from the work of May [28], the chance for the
system to fulfill these requisites, for fixed heterogeneity
σ, decreases exponentially with Q. In fact, for the GCLV
in the coexistence phase, the main obstacle is feasibility
[29]. Eq. (6) suggests that the solution will be feasible
when the sum of all the rows of B−1 is positive. As the
average sum of a row approaches zero with C, the chance
to pick only positive values for Ni decreases exponentially
with Q.

In Figure 4 one observes that, for the particular re-
alization of the ci,j being simulated here, with Q = 10,
the abundance of the weakest species reaches zero around
C = 0.28. This point marks the transition from the het-
erogeneous coexistence phase to the partial coexistence
phase. In this phase the island species richness, S, is
smaller that the mainland richness Q, as some popula-
tions are not supported anymore on the island. Weak

competitors (species that suffer from strong competition
against others that do not suffer as much) are selected
out.

This is the deterministic picture without migration.
With migration, “exclusion” does not correspond to ex-
actly zero density. Instead, above the May transition the
deterministic density of these species is O(λ). Since we
assume that λ is small, demographic noise induces fre-
quent extinction of these transient species. As opposed
to the other, “semi-resident” species (the “semi-” prefix
taking account of the possibility of a short-lived absence
due to demographic fluctuations), the growth rate of a
transient species immigrant is negative, rendering its av-
erage persistence times small, independent of K.

Technically speaking, the May transition takes place at
a critical value of the competition parameter C1, where
the smallest Ni reaches zero. Above the transition one
can define a reduced system, eliminating the row and
column of B corresponding to the eliminated species.
This reduced system does admit a solution where all
the (remaining) species have positive abundance. This
is clear, since at the exact value of C at which the next
species vanishes, the remaining Ni’s constitute a solution
of the reduced problem. In addition, the equation for the
species with vanishing abundance (call it k) reads

0 = 1− (C/K)
∑
j 6=k

ck,jNj (8)

The r.h.s. of this equation is just the growth rate of the
kth species, so that for C smaller than the critical value,
the growth rate of this species is positive, and for C above
this value, it is negative. Thus, the kth species cannot
invade for C’s slightly larger than the value at which that
species disappears from the community.

In Fig. 5, we present the May line in the C-σ plane,
showing the dependence of C1 on σ. The data was ob-
tained by calculating the May point for a set of 100 ran-
dom ci,j matrices for a given sigma, and averaging. We
see that C1 increases with decreasing σ, and appears to
approach unity for σ → 0. We shall return to this point
later.

Increasing C in this manner in the partial coexistence
phase, one obtains a nested hierarchy of solutions, each
with less diversity, which are immune to invasion by
any of the extinct species. As mentioned, this hierar-
chy is completely independent of the carrying capacity
K. This prescription eventually breaks down. At some
point, there is a “resurrection” of one of the eliminated
species. This happens due to the fact that the species in
question was strongly suppressed by another species. As
C increases, this suppressor species is itself reduced in
abundance, and so the suppressed species is able to stage
a comeback. Thus there is a value of C at which this sup-
pressed species is able to invade. At this point, it needs
to be added back to the reduced system, since the small
external flux will reintroduce it and it will then grow in
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FIG. 5. The phase boundaries in the C, σ plane. The left-
most, red, line is the May line where the deterministic solution
with all species present disappears. The next, solid black, line
to the right is the simulationally determined line where the
concave downward part of the species occupancy curve dis-
appears, for the case K = 100, λ = 0.01. The dotted black
line to the right of the solid black line is the same line for
K = 200, λ = 0.01. The rightmost, blue, line marks the re-
gion where the system spends more than 20% of its time in
a particular state, for K = 100, λ = 0.01. The May line was
determined by averaging over 100 different realizations of the
interaction matrix. The other lines result from averages over
10 or 20 matrices.

abundance. Increasing C further, things continue on in
this fashion, losing and regaining species. The main char-
acteristic of the partial exclusion phase, the distinction
between semi-resident species that admit a finite popula-
tion and O(λ) transients that cannot invade, still holds.

An example of the stochastic version of this partial co-
existence phase can be seen in the second and third panels
of Fig. 2. For this realization of the ci,j , with Q = 20,
the May transition point is at approximately C1 ≈ 0.169.
We show in Fig. 6 the time averaged abundances of the
species for an extended version of the run presented in
the second panel of Fig. 2, with C = 0.25, past the
May point. We see that the deterministic solution is es-
sentially missing 3 species, {4, 11, 16}. The stochastic
run shows that the overall structure of the abundance
vs. species of the deterministic model is preserved. The
smaller species are, as might be expected, more severely
impacted by the demographic noise, to the benefit of the
larger species, which do not have to suffer as much com-
petition from these small species. As C increases, not
only does the number of species in the deterministic so-
lution decrease, but a significant fraction of these have
very small abundances. The upshot is that the number
of species in the stochastic simulation with significant
abundance decreases significantly. This is reflected in
the sharp fall of the IPR in this range of C.
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FIG. 6. The time averaged abundance (open circles) vs.
species number for an extended run of the second panel of
Fig. 2. C = 0.25. N = 20, K = 100, σ = 0.5, λ = 0.01. Also
shown is the deterministic time-independent solution (filled
squares). The lines are shown just to guide the eye.

PHASE III: THE “CHAOTIC” PHASE

At some point, C2, the partial exclusion picture breaks
down. This is clear from an examination of the fourth
and fifth panels of Fig. 2. There is no longer a fixed set
of “resident” species which are always present in large
numbers. Instead, there is a constant turnover in the set
of species present. This is reflected in the rise seen in
the IPR in Fig. 3 for C & 0.45. Another way to see
the same point is to examine what we will term the “oc-
cupancy” of each species, the fraction of time that it is
present on the island. In Fig. 7, we show the occupancy
for the (extensions of) the runs in Fig. 2. We see that for
C = 0.25, in the partial coexistence phase, there is a set
of seven species with relatively high occupancy. These
give the overall curve for C = 0.25 a concave downward
form at high rank order. The number of high occupancy
species drops to three at C = 0.45, and at C = 0.65
the concave downward part of the curve has disappeared
and the entire curve is convex upward. Thus, beyond
the rise in the IPR, another sign of the end of the par-
tial coexistence phase is the disappearance of the concave
downward part of the occupancy curve. We will adopt
this as our operational criterion for the location of the
phase boundary. It turns out that this is a more robust
measure than the IPR curve, since the latter requires
very long runs to measure accurately and the existence
of a local maximum is partially masked by intrinsic small
scale oscillations in the IPR curve due to the discrete na-
ture of the problem. In practice, what we do is construct
the straight line curve connecting the first and last points
of the occupancy curve. If any point in the right half of
the occupancy curve lies above this line, the value of C is
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FIG. 7. The occupancy vs. rank species order (of increas-
ing occupancy) for an extended run of the second, third and
fourth panels of Fig. 2. C = 0.25 (open circles), C = 0.45
(filled squares), C = 0.65 (x’s). N = 20, K = 100, σ = 0.5,
λ = 0.01. The lines are shown just to guide the eye.

assigned to the partial coexistence phase. In Fig. 5, we
show the phase boundary measured in this manner. We
find that the partial coexistence phase becomes narrower
as σ decreases, and disappears below some value of σ.

It is hard to identify a single clear criterion from the
deterministic model that controls the transition out of
the partial coexistence phase to this “chaotic” phase. In
some cases the system has no stable stationary solution
for a range of C, in which case we have clearly the par-
tial coexistence phase. In other cases, there are one or
more stable stationary solutions, but with small basins
of attraction such that generic initial conditions do not
flow to them. In the stochastic model, the transition as
measured according to our operational definition clearly
depends on the carrying capacity K. Increasing K moves
the start of the “chaotic” phase to larger C, as can be
seen in Fig. 5.

The stochastic system in the “chaotic” phase shows a
very interesting behavior that differs substantially from
the predictions of the deterministic equations. Instead of
smooth orbits the system appears to visit a state for a
relatively long time, leave it and enters into a period of
mess, gets stuck again into another state for some period
and so on. An example of this can be seen in Fig. 8,
where the deterministic behavior in the left panel stands
is sharp contrast to that of the stochastic system with
K = 100 in the right panel.

To clarify the behavior of the stochastic system,
we have implemented a snapshot quenching technique,
where we attempt to filter out the less interesting small
fluctuations within a given basin of attraction while pre-
serving the major qualitative regime shifts between dif-
ferent basins. Taking the state of the stochastic system
at a certain time t, we have used it as an initial con-

dition for the deterministic dynamics of Eq. (4) with
λ = 0, and integrate numerically this system until it
relaxed to a steady state. (Very rarely, the system re-
laxes to a more complicated dynamical state, which we
characterize by its species content.) This state supports,
typically, only a few species, where all others are absent
either because of the initial conditions (note that the de-
mographic noise leads to local extinctions) or because
of the selection pressure in the deterministic dynamics.
This snapshot quenching procedure indicates the species
composition of the local attractor at t. Repeating this
procedure at t + ∆t, the quenching may relax to the
same configuration (if the system remains in the basin
of attraction of the same attractor) or to another con-
figuration. Figure 9 shows the results of the quenching
procedure for the same stochastic dynamics depicted in
the right panel of Fig. 8.

The dramatic difference between the deterministic and
the stochastic dynamics in this phase has to do with lo-
cal extinctions. Under demographic noise a species with
a deterministic orbit that takes it close enough to zero
abundance may go extinct, and once this happens, it
goes out of the game until the next immigrant from this
species arrives from the mainland and manages to estab-
lish. With small values of λ, this quasi-stable state per-
sists for relatively long times, many species are absent
from the competition so the effective number of species
is smaller and the system can find a steady state, as if it
was in the competitive exclusion phase.

However, unlike the local minima in a glassy energy
landscape, here every local attractor is unstable to inva-
sion by at least one of theQ species on the mainland. The
dwell time distribution for an invadable state is exponen-
tial, with the mean dwell time inversely proportional to
the migration rate λ (at least for not too small K). This
relationship is seen clearly in Figure 10, where the mean
dwell time is plotted against 1/λ for a particular invad-
able state. Accordingly, the stability of a local attractor
is determined by two factors. One is the number of po-
tential invaders, and the other is the low-density growth
rate(s) of the invader(s).

Once successfully invaded, the system leaves the local
attractor and wanders around until it finds another local
attractor. One may think about the local attractor as
an abstract network, where each local attractor is a node
and two attractors are connected by a link if the system
may jump directly from one of them to the other. This
network is seen to have an interesting structure. Figure
11 shows the statistics of number of visits per local attrac-
tor, which is very wide and suggests a (cut-off) power law.
There are a relatively few number of hub states which are
visited in a significant fraction of the transitions, with a
large number of states that are visited relatively infre-
quently. For example, for C = 0.75, the most frequently
visited state is the invadable state {6, 14}, which was vis-
ited 1351 times out of 37, 543 transitions. The next most
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FIG. 8. Snapshots of the abundance for all species. Red is high abundance, dark blue low. Q = 20, K = 100, C = 0.675,
σ = 0.5, λ = 0.001. Left: The deterministic model, with time between snapshots of λt = 0.016. Right: The stochastic
model, with time between snapshots of λt = 0.128. This larger period was chosen in order to exhibit the wide variety of states
generated by the stochastic model.
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FIG. 9. Snapshots of species composition of the local attrac-
tor, as obtained from the right panel of Fig 8 by the snapshot
quenching technique.

visited states had 1231, 907, and 732 visits, respectively.
Actually, for C = 0.75 there are three stable uninvad-
able states. The stable state {1, 3, 15, 18, 20} however
was only visited twice, and each time lasted only 1 snap-
shot. The other two stable states were not visited at all.
Thus, these stable states, for the value of K = 100 we
are studying, are dynamically irrelevant. We shall return
to this point later when we discuss the phase at higher
C where various stable states do play a significant role.

The power-law distribution of numbers of visits sug-
gests an interesting transition network, with a very het-
erogeneous structure. Quantifying the degree distribu-
tion of the emerging network we have found that is quite
close to be scale-free. It shows a power law decay of the
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FIG. 10. The average lifetime of the invadable state with
species {15, 18, 20} for the Q = 20, C = 0.675 system simu-
lated in Fig. 4, as a function of 1/λ, showing that the lifetime
is inversely proportional to λ. The dotted curve is a straight
line to help guide the eye.

probability of a node to have k links, P (k), with a small
exponent (≈ 1.1), in the case demonstrated in Figure 12,
superimposed on a slow exponential cutoff.
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FIG. 11. Probability distribution for the number of visits
to the various invadable metastable states in a run of total
duration λt = 2 · 104, with snapshots taken each λt = 0.08
for a total of 2.5 · 105 snapshots. Data is shown for C = 0.75
and 0.85. For C = 0.75, a total of 598 different states where
visited, out of a total of 2045 states. N = 20, K = 100,
λ = 0.01. Also shown is is the power-law P (x) ∼ x1.1, which
is a good description of the distribution for all but the most
visited states.
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FIG. 12. Distribution of the in- and out- degrees for the
transitions between the 3729 states encountered in a long run,
N = 40, C = 0.4, K = 100, λ = 0.01.

STRONG COMPETITION AND PHASE IV: THE
GLASS-LIKE PHASE

We have already mentioned that above C2, nonstation-
ary attractors can coexist with one or more stable sta-
tionary states. However these stationary states had small
basins of attraction in addition to containing species with
small abundances. Thus, in the stochastic dynamics they
were visited infrequently and had short lifetimes (at least
for K’s less than 104 or so) and so their dynamical rele-

vance was marginal. This situation changes qualitatively
beyond some larger value of C, C3. Thus, for example,
for our standard instance of a Q = 20, σ = 1/2 ci,j ma-
trix, the stable state {3, 4, 6} appears above C = 0.836
and the stable state {2, 16} appears above C = 0.877.
The deterministic solution reveals that the smallest abun-
dance in the former state at C = 0.9 is 0.28K and in
the latter state, 0.80K. For K = 100, then, they are
fairly robust to demographic noise and have correspond-
ingly long lifetimes. These lifetimes are controlled by K
and only weakly impacted by decreasing λ. Due to the
small number of species represented in these states, they
also are visited relatively frequently. As C increases fur-
ther, the depth of the various stable solutions increases
nonuniformly, and one state eventually dominates. We
operationally define the onset of this fourth phase as the
value of C in which the system dwells in a single state
for over 20% of the time. The last phase boundary is
illustrated in Fig. 5.

ENCOUNTER AT THE HUBBELL POINT

As indicated in Figure 5, the transition lines between
the various phases appear to meet at the Hubbell point.
Clearly, for any fixed C < 1 the deterministic model sup-
ports full coexistence when σ → 0, implying that the
May line must hit the Hubbell point. Similarly, for fixed
C > 1 and vanishingly small σ every solution with one
species of abundance K is uninvadable, so the line sepa-
rating the “chaotic” phase from the glass-like phase also
has to reach to the Hubbell point. Clearly, it is difficult
to implement our operational procedures for determining
the phase boundaries in the vicinity of the Hubble point,
due to the weak stability of the attractive manifolds in
this region, which the noise will smear out. However, Fig.
5 indicates the merging of the May line and that sepa-
rating the partial coexistence and the “chaotic” phases
moves to smaller σ for increasing K. If the latter bound-
ary indeed extends down to σ = 0 for larger enough K,
it must also hit the Hubbell point.

The theory of Hubbell, assuming strict neutrality of
all species in the community, was criticized for this un-
realistic assumption. In particular, it was stressed that
any deviation from a strict neutrality must lead to a fix-
ation of the system by the fittest species [30]. As we see
here, the situation is more complicated. C = 1, σ = 0 is
apparently a quadracritical point, with slight deviations
from perfect neutrality yielding different results, depend-
ing on the ratio between C and σ. When superimposed
on the effect of noise (and, in particular, of demographic
stochasticity that allows for the quasi-absorbing states)
the phase diagram may be very rich.

One particular example is the distribution of persis-
tence (colonization to extinction) times of species (as op-
posed to states, which are characterized by a given set of
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extant species). Figure 13 shows this distribution slightly
above the Hubbell point, i.e., for C = 1, σ = 0.0156. We
see that the distribution of species lifetimes is quite wide.
Indeed, Figure 13 suggests a power-law distribution with
an exponent close to 2, which resembles the findings of
[6].
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FIG. 13. Distribution of species lifetimes, for σ = 0.0156,
K = 1000, λ = 0.01 for various C.

DISCUSSION AND CONCLUDING REMARKS

The mainland-island system, considered herein, is one
of the main models of spatial ecology. It played an im-
portant role in the empirical assessment of the two lead-
ing pictures of neutral dynamics, the Wilson-MacArthur
model (in which all species are equivalent, i.e., admit the
same extinction/recolonization rates) and the Hubbell
neutral biodiversity model (where all individuals are de-
mographically equivalent). In particular the success of
Hubbell in explaining the species abundance distribu-
tion in tropical forests, which is the main achievement
of the neutral theory of biodiversity, depends entirely on
the spatial features of the model, i.e., on the mainland-
island structure. The species abundance distribution of
the well-mixed model does not fit the empirical data.

In light of this, the rich structure of the mainland-
island competitive Lotka-Volterra system that revealed
itself in this study appears to be very interesting. Clearly,
the perfect neutrality of Wilson-MacArthur and Hubbell
models depends on unrealistic fine tuning of the system
parameters, so one would like to figure out what happens
when this assumption is relaxed. It turns out that the
answer of this question is quite subtle, in particular for
the Hubbell point. Slight deviations from the perfectly
neutral scenario may lead to absolutely different dynami-
cal behaviors, and the role of noise close to the transition
is crucial.

Our work opens up a few interesting questions about

the dynamics of local and global communities. First,
one would like to characterize the dynamics of empiri-
cal communities as belonging to one of the four quali-
tative phases considered above. With databases like the
North-American Breeding Birds survey, giving the yearly
community composition in thousands of locations along
about 45 years, this task may be achievable. Once the
dynamics of a local community is understood, the over-
all species turnover rates in a system of local patches
connected by migration (a metapopulation) may be in-
vestigated both theoretically and by an analysis of field
data. One possibility that emerges from our study is that,
in such a metacommunity of chaotic or glassy patches,
the time to extinction of an extinction-prone species will
be so large that it will reach the evolutionary scale (the
speciation time) and thus the biodiversity puzzle will be
solved.

Two technical points also merit some discussion. First,
although the noise introduced into the model is purely
demographic, i.e., it scales with the square root of the
population size, the abundance fluctuations are much
larger, as clearly seen in Figure 2. The reason is that
the demographic noise is superimposed on the nonlinear
effects of the deterministic dynamics. This phenomenon
is in agreement with many recent studies [31–33], show-
ing that the noise in empirical systems is clearly stronger
than demographic. Moreover, at least for large K one
should expect that the large abundance semi-resident
species are less affected by the noise than the rare species,
such that the scaling of abundance fluctuations with Ni
will be stronger than the square root of Ni but weaker
than Ni; this is indeed the case in some empirical systems
[31].

A second issue, somehow connected to the first, is the
effect of “real” environmental noise, i.e., time dependent
fluctuations of the model parameters. Environmental
stochasticity is usually considered as a destabilizing fac-
tor, increasing species turnover rate and the amplitude of
abundance fluctuations, but it may also stabilize a ci,j in-
dependent equal abundance fixed point due to the storage
effect [34]. We hope to address this issue in subsequent
publication.

Finally, we believe that the classification presented
here, although only semi-qualitative at present, is very
important to the understanding of community dynamics
in general. In most cases the data analyzed by researchers
reflect the local species richness rather than the state of
a regional pool, but is interpreted as a fairly honest sam-
ple of the global community, assuming, more or less, that
the system is either in the heterogeneous coexistence or
in the partial coexistence phase. Such an interpretation
may be misleading. In particular, in the chaotic and in
the glassy phase sudden drastic variations in the struc-
ture of the community reflect the intrinsic dynamics of
the system and, in contrast to a very common interpreta-
tion, are not evidence for exogenous factors that induce
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a catastrophic shift. As the concerns about the impact of
anthropogenic changes rise, it is imperative to take this
possibility into account.
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Maritan, Ignacio Rodŕıguez-Iturbe, and Andrea Rinaldo,
“Spatial effects on species persistence and implications
for biodiversity,” Proceedings of the National Academy
of Sciences 108, 4346–4351 (2011).

[7] O. Allouche and R. Kadmon, “A general framework for
neutral models of community dynamics.” Ecol. Lett. 12,
1287–1297 (2009).

[8] Dominique Gravel, Charles D. Canham, Marilou
Beaudet, and Christian Messier, “Reconciling niche and
neutrality: the continuum hypothesis,” Ecology Letters
9, 399–409 (2006).

[9] Ryan A. Chisholm and Stephen W. Pacala, “Niche and
neutral models predict asymptotically equivalent species
abundance distributions in high-diversity ecological com-
munities,” Proceedings of the National Academy of Sci-
ences 107, 15821–15825 (2010).

[10] Tommaso Zillio and Richard Condit, “The impact of neu-
trality, niche differentiation and species input on diver-
sity and abundance distributions,” Oikos 116, 931–940
(2007).

[11] David Tilman, “The importance of the mechanisms of in-
terspecific competition,” American Naturalist , 769–774
(1987).

[12] Simone Pigolotti, Cristóbal López, and Emilio
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