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� Catastrophic shifts pose a threat to ecology, early warning indicators are needed.

� The tools suggested so far are aimed at predicting the tipping point.
� However in spatial system the transition occurs when alternative state invades.
� We suggest a cluster tracking technique to identify imminent shifts on spatial domains.
� This technique also distinguish between smooth and catastrophic transitions.
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Catastrophic shifts are known to pose a serious threat to ecology, and a reliable set of early warning
indicators is desperately needed. However, the tools suggested so far have two problems. First, they
cannot discriminate between a smooth transition and an imminent irreversible shift. Second, they aimed
at predicting the tipping point where a state loses its stability, but in noisy spatial system the actual
transition occurs when an alternative state invades. Here we suggest a cluster tracking technique that
solves both problems, distinguishing between smooth and catastrophic transitions and to identify an
imminent shift in both cases. Our method may allow for the prediction, and thus hopefully the pre-
vention of such transitions, avoiding their destructive outcomes.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The stability of ecosystems, and in particular the response of
populations and communities to external perturbations, is one of
the main topics in contemporary science (Müller et al., 2010). As
an impact of anthropogenic changes (carbon emission, habitat
fragmentation, introduction of non-indigenous species and
pathogens) reaches the global scale, worries about their potential
outcomes are growing (Dawson et al., 2011). Recently, there is an
increasing concern about the scenario known as catastrophic
regime shift, where a relatively small change in the environmental
conditions leads to a sudden jump from one steady state to
another (Scheffer et al., 2001, 2012). This change is often
ann).
irreversible and accompanied by hysteresis: once the system
relaxes to its new state, it will not recover even when the envir-
onmental conditions are restored.

One of the main topics considered in the context of cata-
strophic shifts is the possibility of a sudden extinction of popula-
tions as the environment varies (Drake and Griffen, 2010; Taki-
moto, 2009; Peters et al., 2012). For example, changes in solar
radiation owing to variations in the Earth's orbit may have trig-
gered the sudden mid-Holocene (5000 yr ago) desertification of
the Sahara (Scheffer et al., 2001). The standard model used to
describe this phenomenon involves nonlinear dynamics that
supports two alternate steady states with a (backward) fold
bifurcation (Scheffer et al., 2001; Rietkerk and Van de Koppel,
1997). This mechanism is illustrated in Fig. 1a, in which the various
states of the system are shown for different values of the para-
meter α that stands for environmental stress (e.g. grazing, or
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Fig. 1. Catastrophic shift vs. continuous transition. The generic features of a nonlinear system that supports catastrophic shift are illustrated in panel a (left). The two stable
state (full lines, here one represents vegetation, the other bare soil) coexist for some region of the stress parameter α. The transition may take place at the tipping point (right
dotted line), where the basin of attraction of the vegetation state (corresponding to the right well in the circled cartoon) vanishes, and its attractiveness (the curvature of the
well) approaches zero. In spatial systems, on the other hand, large bare-soil clusters will invade vegetation to the right of the Maxwell point (left dotted line), where the
stability of both alternate states becomes equal. Under disturbances, the transition takes place at the MP (Bel et al., 2012). A continuous transition scenario is illustrated in
panel b (right), where vegetation went extinct as the stress keeps growing. The theory of extinction transitions of this type also suggests diverging spatio-temporal
fluctuations at the transition point (Hinrichsen, 2000).
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decreased precipitation). For certain values of α the system sup-
ports two stable states, one corresponds to vegetation, say, and
another to bare soil. This bistability is related to the nonlinearity of
the system and reflects a positive feedback mechanism (HilleR-
isLambers et al., 2001; Holmgren et al., 1997), such that vegetation
grows above some critical density, while below this density the
vegetation declines.

For such a system, with positive feedback and alternative
steady states, the vegetation collapses from a finite value to zero
once α crosses a critical value at the tipping point. Vegetation
density by itself provides no indication to the distance of the
system from the tipping point, therefore the search for early
warning indicators that will allow one to predict an imminent
transition has become a major research topic in the last decade.

Most of these efforts were focused on the phenomenon of
critical slowing down, i.e., on the diverging sensitivity of the sys-
tem to external perturbations in the vicinity of a tipping point
(Eslami-Andergoli et al., 2014; Scheffer et al., 2009). This feature
has, indeed, been demonstrated in recent experiments (e.g. Drake
and Griffen, 2010; Dai et al., 2013; Veraart et al., 2012; Carpenter et
al., 2011). Basically, the idea is to trace the rates at which the
system recovers from spatial or temporal perturbations, and when
these rates are becoming slower and slower, this will indicate that
the system is approaching catastrophe.

However, a few recent studies cast a severe doubt about the
relevance of these indicators to empirical ecological dynamics.
First, critical slowing down and its consequences, like fat tailed or
skewed patch statistics, do not necessarily indicate a tipping point
or a discontinuous transition (Manor and Shnerb, 2008; von
Hardenberg et al., 2010; Kéfi et al., 2007, 2010). These features are
also a characteristic of continuous transitions, where the system
changes its state smoothly and reversibly without any hysteresis
(Kéfi et al., 2013; Eslami-Andergoli et al., 2014). A schematic
illustration for such a scenario is given in Fig. 1b, where the
increase in stress leads to a gradual extinction without bistability.
Continuous transitions of this type characterize various generic
ecological models, including logistic growth without an Alley
effect and the susceptible–infected–susceptible (SIS) model for
epidemics. In these cases, and under many other types of
dynamics, the transition to extinction as the birth rate decreases is
continuous with no sudden jumps, yet the response of the system
to external perturbations becomes infinitely slow close to the
transition point (see, e.g., Kessler and Shnerb, 2007; Kessler et al.,
2008). A few recent studies, showing a non-hysteretic recovery
from desertification when the external pressure (grazing, in most
cases) has been removed (Fuhlendorf et al., 2001; Rasmussen et
al., 2001; Valone et al., 2002; Zhang et al., 2005; Allington and
Valone, 2010), also suggest that the transition is, at least in some
cases, continuous and reversible.

Another line of criticism has to do with the effects of systems'
spatial structure. When a system admits two stable states, local
disturbances and fluctuations often generate patches of an alter-
nate states, like regions of bare soil surrounded by vegetation and
vice versa. As pointed out by Durrett and Levin (1994), in a spatial
system the Maxwell point (MP, see in Fig. 1a) marks the boundary
between two regimes: to the right of the MP, large patches of bare
soil invade vegetation, while to the left of the MP vegetation
invades bare soil. Accordingly, for the generic case of a spatial
system with stochastic dynamics one should expect the transition
to take place close to the Maxwell point, not at the tipping point
(Bel et al., 2012). At the Maxwell point both states are stable, as
seen in Fig. 1a, and there is no critical slowing down. Therefore,
the early warning criteria which are based on the slow recovery of
the system at the vicinity of the tipping point will fail to predict
the crossing of the Maxwell point.

It may be instructive to draw an analogy to the physics of phase
transition. A first order transition, like the process of water
freezing as the temperature decreases, has also the features illu-
strated in Fig. 1a: under standard pressure water and ice are two
alternative stable states of the system up to the tipping point at
�48.3 °C, where the state associated with water loses its stability,
and at the vicinity of this critical temperature the healing of
fluctuations indeed slows down. But the actual transition in almost
any practical situation happens at the melting point (which is the
analogous of the Maxwell point) at T¼0 °C, when ice invades
water. This happens because the system is spatial, and thermal
fluctuations generate microscopic ice droplets that invade water
below the melting temperature. In the same manner small bare
soil patches will invade the vegetation to the right of the Maxwell
point in Fig. 1a, meaning that under inevitable effect of stochastic
perturbations (that generate these patches) the transition happens
close to the Maxwell point, where indicators like critical slowing
down are inefficient.

Here we would like to suggest a new method aimed at iden-
tifying the state of the system. Our method both distinguishes
between continuous transitions and catastrophic shifts and pro-
vides a quantitative measure of the distance from the transition.
This method is based on the monitoring of the cluster dynamics,
and in particular the probability of a cluster to grow or shrink as a
function of its size. It turns out that this technique reveals the



Fig. 2. Cluster dynamics in bistable system. Monitoring the evolution of clusters in a bistable Ginzburg–Landau system with environmental noise (see methods), the chance
of a cluster to grow (green) or to shrink (red) is plotted against its size for various values of α: 163 (panel a, left), 164 (middle) and 165 (right) where α corresponds to
increased stress. Clearly, the chance of a cluster to grow in size is positively correlated to its area. As the environmental conditions deteriorate the minimal size of a growing
cluster is increasing, so the value of Sc grows with α. In panel (b) the Sc is plotted against α, with apparent divergence as α approaches αMP. The parameters for the figures
ζ¼ 2, D¼6 and S¼ 100� 100. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Cluster dynamics for a system approaching a continuous transition. The time evolution of vegetation clusters described by a contact process (birth–death process with
one individual per site, see Methods) was monitored. In contrast with the behavior illustrated in Fig. 2, here the chance of a cluster to grow (green) increases when its size
decreases (panel a). The three subplots correspond to those values of α: 0.47 (left), 0.52 (middle) and 0.58 (right). Moreover, as the stress increases, Sc decreases, as only
individuals surrounded by bare soil admit positive growth rate (panel b). Results were taken from simulation on a S¼ 100� 100 lattice. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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nature of the transition: a catastrophic shift system is character-
ized by a positive correlation between cluster size and its chance
of growing. On the other hand, for a continuous transition the
opposite is true, as small clusters tend to grow while large clusters
shrink. The distance from the transition, in both cases, is related to
the critical cluster size, and we will show that, as the system
approaches the transition point, this size diverges for dis-
continuous transitions and goes to zero for continuous transitions.

This work, as we shall explain below, is based on simple
insights gained from nucleation theory (for discontinuous transi-
tions) and the theory of extinction dynamics. To demonstrate its
power, we present a numerical study of generic models for con-
tinuous and discontinuous transitions. We begin with a compar-
ison between the Ginzburg–Landau model of irreversible transi-
tions and the contact process model for gradual extinction. Then
proceed to analyze the same Ginzburg–Landau model, now with
different levels of demographic noise. In a recent work (Martín et
al., 2015) this model has been shown to have a discontinuous
transition when the demographic stochasticity is relatively weak,
and a continuous transition when the stochasticity is strong; we
show that these features are related to the relative importance of
positive/negative feedback, and that our technique can identify the
relevant regime and predict the transition.

All these models are analyzed in the context of desertification,
i.e., a transition from an active (vegetation) to an empty (bare-soil)
state. However the main lessons acquired are relevant, mutatis
mutandis, to the analysis of catastrophic and non-catastrophic
transitions in general.
2. Methods

Throughout this paper we consider and simulate two generic
scenarios, the case of a system with positive feedback that sup-
ports a catastrophic shift and irreversible transition, and the case
dominated by negative feedback where the transition is con-
tinuous and there is no hysteresis. The models and the simulation
techniques are presented in this section.

Catastrophic transition: We have implemented the Ginzburg–
Landau model, which is the minimal model that describes a dis-
continuous (first order) transition. In the context of desertification
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we are looking at the biomass density, b, that satisfies:

∂b
∂t

¼D∇2b�αbþβb2�γb3: ð1Þ

Here the β term describes the effect of positive feedback (an
increase of the growth rate with density) and the γ term enforces a
finite carrying capacity. The diffusion term reflects the spatial
spread of the biomass, e.g., plant dispersal. For further details, see
Weissmann and Shnerb (2014).

The dynamics described in Eq. (1) supports two alternative
stable states: b¼0 (the bare soil state) and the uniform solution

b¼ �α=ð2γÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2�4αγ

q
=ð2γÞ (vegetation). An increase in the

control parameter α corresponds to increased stress (less pre-
cipitation, more grazing, etc.). Beyond the tipping point at αTP ¼
β2

=ð4γÞ the vegetation state no longer exists; as α crosses αTP, a
catastrophic shift occurs and the system collapses to the bare soil
state. To restore the vegetation state the strength of the environ-
mental pressure has to be reduced until it passes through the
other tipping point at α¼ 0.

Environmental stochasticity: Simulations of this model were
performed on a 2d, S¼ L� L lattice with periodic boundary condi-
tions. The deterministic dynamics was simulated via Euler inte-
gration of Eq. (1) with Δt ¼ 0:001, implementing asynchronous
update to avoid artifacts like fictitious bias of the dispersal. To add
disturbances to the model, after every ζ elementary timesteps (a
“step” is a numerical integration of Eq. (1) over Δt ¼ 0:001 ) the
biomass at each site was multiplied by 1þη, where η is a random
number taken from a uniform distribution between �Δ and Δ. The
Fig. 4. Bistable system with weak demographic noise. Tracking clusters in a bistable Gin
cluster to grow (green) or to shrink (red) is plotted against its size for various values of α
cluster to grow is positively correlated to its area. The parameters for the figures ζ ¼ 50,
caption, the reader is referred to the web version of this paper.)

Table 1
Summary of the suggested indicators.

Indicator Catastrophic regime shift Continuous transition

Small dusters Shrink Grow
Big clusters Grow Shrink
Critical cluster Diverges Goes to minimal value
parameters used for the results presented in Fig. 2 are β¼ 40; γ ¼
1:6 (hence αMP ¼ 222:22 and αTP ¼ 250), L¼ 100; ζ ¼ 2; Δ¼ 0:4:

Demographic stochasticity: Recently, it was shown that the 2d
version of Ginzburg–Landau model (see Eq. (1)) supports both
continuous and discontinuous transitions, depending on the
strength of the demographic noise (Martín et al., 2015). When the
noise is relatively weak the transition is first-order-like, with a
discontinuous change in the vegetation cover, two tipping points
and hysteresis. On the other hand, the very same system under
strong noise admits a second order continuous transition that
belongs to the directed percolation equivalence class.

To add demographic noise to the dynamics of Eq. (1), we
implemented the technique used (and explained in detail) in
Weissmann and Shnerb (2014). The deterministic dynamics of (1)
is simulated, again, using Euler integration, but the biomass at
each site, bðx; tÞ, is replaced by an integer, taken from a Poisson
distribution with an average bðx; tÞ, every ζ elementary timesteps.
The results for weak noise, presented in Fig. 4, correspond to
ζ ¼ 50, while the strong noise results in Fig. 5 were obtained with
ζ ¼ 2. The other parameters are the same as above.

Contact process extinction transition (Lattice SIS): In a contact
process every site is either empty or occupied by one individual
(active). An active site dies at a rate one, and is trying to reproduce
at rate 1=α (again, α is a stress parameter, an increase in α leads to
a decrease in the birth rate). When an individual tries to repro-
duce, it picks at random one of its neighboring sites, and if the
chosen site is empty, it becomes active, otherwise, nothing hap-
pens. Accordingly, the productivity of a site is inversely propor-
tional to the local density.

The process was simulated using the Gillespie algorithm on a
2D, 100�100 lattice. It is known (Dickman and da Silva, 1998;
Hinrichsen, 2000) that in this case the transition is continuous and
extinction takes place at αc � 0:61.

Cluster tracking: Trying to emulate the results of consecutive
censuses of an empirical system, we have “sampled” our system
every η generations: a snapshot of the spatial pattern was taken
and the dynamics of clusters is obtained by comparison with the
zburg–Landau system with weak demographic noise (see Methods); the chance of a
: 193 (panel a, left), 194 (middle) and 195 (right). Clearly, also here the chance of a
D¼6 and S¼ 100� 100. (For interpretation of the references to color in this figure
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previous snapshot. For the contact process, the definition of a
spatial cluster is trivial: it is a collection of active sites in which
every pair is connected by a path of nearest neighbor active sites.
For the catastrophic shift model every site was classified as
“active”/“inactive” depending on whether the biomass bi;j in a
given cell of the lattice is above/below a threshold corresponding
to the unstable solution of 1. If bi;j is in the basin of attraction of
the vegetation state and as “inactive” if this point is attracted to
the bare soil state. These clusters were identified and labeled using
MATLAB's bwlabel subroutine.

To track the evolution of clusters we have implemented a
simple motion tracking algorithm (see, e.g., Seri et al., 2012;
Falkowski et al., 2006; Hartmann et al., 2014), and then the cluster
at one snapshot is compared with the previous one to identify
growth or decay.
3. Results

The spatial dynamics of populations is usually modeled (as in
Eq. (1)) by some kind of “diffusion” term, representing the random
movement (or dispersal) of individuals among neighboring pat-
ches. However, the results presented here are independent on the
exact form of the spatial movement term. The only crucial feature
is that the spatial dynamics prefers “smeared” spatial patterns, i.e.,
the system is trying to avoid strong spatial gradients of population
density.

As mentioned above, the main characteristic of bistable sys-
tems that allows for catastrophic transitions is positive feedback: in
a local patch, small populations go extinct and large populations
are self-sustained. However, when the spatial dynamics is taken
into account, small patches, for which the area of the surface
region is large with respect to their ”volume”, are under stronger
stress from their neighborhood, while the effect of surface stress is
vanishingly small for large patches. This phenomenon is analogous
to the opposing effects of surface tension and bulk free energy that
governs the physics of nucleation in first order transitions (Kelton,
1991). As a result, one expects that, for the same value of the
external parameter (say, α), large clusters are more stable, and
their tendency to grow (or at least not to shrink) is enhanced with
respect to small clusters.

When the system has no, or very weak, positive feedback, there
is no bistability. Individuals feel the stress from their neighbors
(due to resource competition or any other process that limits the
carrying capacity), but they have no (or almost no) benefit from
such a proximity, and their fitness increases with the level of
spatial isolation. Consequently, there is no bistability and popula-
tion density goes continuously to zero at some critical value of the
external parameter. However, as discussed by many authors (e.g.,
Bonachela et al., 2012 and references therein), the spatial structure
of the system is still very relevant. The fate of a population
depends on the ratio between birth and death rates. In spatial
systems the local negative feedback (meaning that individuals
cannot reproduce in, or into, occupied sites), when superimposed
on the emergent clustering (since death occurs everywhere but
reproduction is local) leads to a decrease of the effective birth rate.
As a result, the transition in spatial system takes place when the
per capita birth rate is larger than the death rate. Accordingly, for
these systems the effect of density is just the opposite: the smaller
the cluster, and the larger its interface with empty (or low density)
sites, the larger its chance to grow.

To demonstrate the applicability of these qualitative insights,
we have analyzed first two generic models. For the case of cata-
strophic shift, we used, as in Bel et al. (2012) the Ginzburg–Landau
model, which is the simplest nonlinear dynamics that provides
both positive feedback and finite carrying capacity. To model a
continuous extinction transition we have implemented the contact
process, a canonical model of a birth–death process on spatial
domains. As suggested by Janssen (1981) and Grassberger (1982),
continuous extinction transitions belong generically to the direc-
ted percolation equivalence class, for which the contact process is
a standard example. In the context of population dynamics, the
applicability of this conjecture was demonstrated by Bonachela
et al. (2012).

In Fig. 2 the chance of a cluster to grow/shrink is plotted against
its size for the Ginzburg–Landau model (see Methods). Clearly, the
larger the size of a cluster, the larger is its chance to grow. Just the
opposite feature is demonstrated in Fig. 3 for the continuous
transition: here the chance of a cluster to grow is negatively cor-
related with its size. This qualitative feature is quite prominent
and may allow one to identify the nature of the system (bistable or
not) and to guess the characteristics of an imminent transition
(continuous or catastrophic) even with poor-quality data.

A second feature, demonstrated in Figs. 2 and 3, is the
appearance of a critical cluster size ScðαÞ. Clusters of size Sc neither
shrink nor grow on average. In catastrophic (positive feedback)
systems smaller clusters shrink and larger cluster grow, while the
opposite is true when the transition is continuous. As the value of
α approaches the Maxwell point (αMP) for a bistable system,
Sc-1, meaning that no vegetation cluster grows on average
above αMP. On the other hand, in a continuous transition Sc takes
its minimal value at the extinction point, indicating that even
small clusters cannot grow anymore.

Accordingly, our suggested diagnostic procedure has two
stages. The first is based on (at least) two snapshots of the spatial
system, allowing for a comparison of the chance of a patch to
shrink or to grow, thus indicating the type (bistable/catastrophic
or monostable/continuous) of the system. Comparing (at least)
three snapshots and tracing the value of Sc along time one obtains
an early warning indication of an imminent transition if Sc grows
(in a catastrophic system) or shrinks (in a continuous system). This
procedure is summarized in Table 1.

If a bistable system is in its extinction phase (i.e., α4αMP),
where a large enough patch of bare soil will invade vegetation, but
the disturbance that creates this void has not yet happened) the
small patch dynamics still provides an indication as to the state of
the system, as the lines representing the chance to grow/shrink
(see Fig. 2) will level off and saturate, indicating that Sc-1 and
that the system is living on a borrowed time.

Clearly, systems with pure positive feedback (like the one
considered in Fig. 2) or pure negative feedback (Fig. 3) are just two
extremes of a continuum. In general one may expect both positive
and negative feedback, with transition characteristics that reflect
the weight between these two forces. An interesting opportunity
to consider such a complex situation while keeping the model
simple was discovered recently by Martín et al. (2015). These
authors considered the Ginzburg–Landau model (1) with demo-
graphic noise, and show that the qualitative features of the tran-
sition depend on the strength of this noise. When the noise is
weak, the general features of the Ginzburg–Landau model,
including positive feedback and bistability, are preserved. The only
role of noise is to generate local disturbances that may grow or
shrink depending on α, so the transition is still discontinuous and
hysteretic. Strong demographic noise implies that the number of
individuals per site is small (see the discussion in Kessler and
Shnerb, 2012). Accordingly, negative feedback dominates the sys-
tem (the gain of an individual from its neighbors due to the β term
in (1) is weaker than the stress imposed by the same neighbors)
and the transition is continuous, contact process like.

We used this system in order to examine the performance of
our technique using a model that admits both continuous and
discontinuous transition, thus allowing for a fair comparison



Fig. 5. Bistable systemwith strong demographic noise. Same as Fig. 4, but the results obtained from a Ginzburg–Landau dynamics with strong demographic noise ðζ¼ 2Þ. The
chance of a cluster to grow (green) or to shrink (red) is plotted against its size for various values of α: 174.5 (panel a, left), 174.9 (middle) and 175.3 (right). (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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between the two scenarios. Fig. 4 shows the result for the system
considered by Martín et al. (2015) with weak demographic noise;
indeed the results are the same as those shown in Fig. 2. By
changing only one parameter of the system, increasing the
strength of the demographic noise, we obtained the results pre-
sented in Fig. 5. Here the effects of negative feedback are pro-
nounced and in general the figure is very similar to Fig. 3, although
some reminiscence of the positive feedback still manifest them-
selves for very small clusters.

Finally, we have checked (see supplementary material) that the
results for continuous transitions (negative growth rate for large
clusters) are not an artifact of cluster fragmentation by taking into
account only changes of clusters' size by 1–3 sites (avoiding events
in which one large cluster decomposes into two only because of
the “death” of a single patch), and the results were, for all practical
purposes, the same. The method may be used even for poor
quality data, when one cannot identify an individual unit of
vegetation. Whenwe traced the overall vegetation within circles of
fixed radius, monitoring the total amount of vegetation within
each circle as a function of time, the same results were obtained:
for a positive feedback system the per capita growth rate is posi-
tively correlated with the density, while for negative feedback
systems it is negatively correlated.
4. Discussion

The main insight we have implemented in this paper is the
distinction between systems with positive feedback, i.e, positive
correlation between the fitness of individuals and the density, and
systems with only negative feedback, where an increase in the
local density is followed by a decrease of individual's fitness. In the
first case one expects an alternate steady state, hysteresis and
catastrophic shift, while in the other case the extinction transition
is continuous. As explained above, positive feedback leads to an
access growth of large clusters, while in systems with negative
feedback small clusters are favorable.
Accordingly, we have suggested two diagnostic tools, both are
based on comparison between consecutive snapshots taken from
the same spatial domain. First, by comparing (at least) two snap-
shots one may obtain a quantitative assessment of the importance
of positive feedback by measuring the correlation between the size
of a cluster and its chance to grow or shrink. Using (at least) three
snapshots one may get an early indication of an immanent tran-
sition, as Sc diverges (in the catastrophic shift scenario) or shrinks
to low values (in the continuous transition case). We demon-
strated the power of our method in systems with pure negative
and pure positive feedback (a contact process and a Ginzburg–
Landau model with environmental stochasticity) and in a system
where the two feedback interfere with each other and the results
depend on their relative weights (Ginzburg–Landau model with
demographic stochasticity).

We did not consider here the case in which the effects of
positive and negative feedbacks are equal. One should expect such
a situation in the model considered in Martín et al. (2015) at the
noise level that corresponds exactly to the limit point between
continuous and discontinuous transition. We believe that in this
point the transition should belong to the voter model equivalence
class (Dornic et al., 2001), and the chance of a cluster to grow or
shrink is independent of its size (no surface tension).

In summary, we have suggested a general diagnostic tool that
may serve any specific study of a potential transition on spatial
domain. Tracking cluster dynamics along a certain period reveals
the dominant mechanism (positive/negative feedback) that gov-
erns the dynamics, the expected character of a transition (smooth/
abrupt) and its proximity. We hope that this technique will
enhance the predictive ability of relevant studies, assisting the
effort to avoid undesirable catastrophic transitions, together with
their disastrous consequences.
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Appendix A. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2016.02.033.
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