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Abstract.  Desertification in dryland ecosystems is considered to be a major 
environmental threat that may lead to devastating consequences. The concern 
increases when the system admits two alternative steady states and the transition 
is abrupt and irreversible (catastrophic shift). However, recent studies show that 
the inherent stochasticity of the birth-death process, when superimposed on the 
presence of an absorbing state, may lead to a continuous (second order) transition 
even if the deterministic dynamics supports a catastrophic transition. Following 
these works we present here a numerical study of a one-dimensional stochastic 
desertification model, where the deterministic predictions are confronted with 
the observed dynamics. Our results suggest that a stochastic spatial system 
allows for a propagating front only when its active phase invades the inactive 
(desert) one. In the extinction phase one observes transient front propagation 
followed by a global collapse. In the presence of a seed bank the vegetation 
state is shown to be more robust against demographic stochasticity, but the 
transition in that case still belongs to the directed percolation equivalence class.
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1.  Introduction

Systems governed by nonlinear dynamics may support two or many fixed points for 
the same set of parameters. Slow variation of the external parameters may lead to an 
abrupt change of the state of the system (catastrophic shift) at the tipping point, where 
one of the equilibrium states loses its stability. In ecological systems, these shifts are 
often harmful and may cause a loss of bioproductivity and biodiversity, which, in turn, 
negatively aect ecosystem function and stability [1, 2]. Therefore, the possibility that 
ecosystems may undergo such an irreversible transition in response to small and slow 
environmental variations raises much concern [3–8].

Catastrophic shifts are considered as an important factor in many studies of 
transitions between various vegetation regimes, including the destructive process of 
desertification [9–11]. Many works suggest a positive correlation between the local veg-
etation density and its growth rate as a result of various positive feedback mechanisms 
like shading, root augmentation, infiltration rates, and fire cycles [12–15]. If the posi-
tive feedback is strong enough the system may support alternative steady states. The 
transition from one state to another may take place abruptly beyond the tipping point, 
or (in spatial domains) gradually, with the stable phase invading the metastable one 
[16, 17]. A general cartoon that illustrates the possible scenarios is shown in figure 1.

However, ecological systems in general are known to be very noisy, aected by all 
kinds of stochastic processes [18–20]. In particular, the stochasticity involved in the 
birth-death process of individuals (demographic noise) may modify the characteristics 
of the transition, as it supports an absorbing state. Unlike other types of stochasticity 
that only lead to a shift in the location of the Maxwell point [21], the transition in the 
presence of an absorbing state may be continuous (second order) and reversible, usually 
belong to the directed percolation equivalence class [22–25]. Following these observa-
tions, a minimal model for desertification transition in one [26] and two [27] dimen-
sions have been considered in recent years. It turns out that in 1d the transition is 
always continuous, while in two spatial dimensions the characteristics of the transition 
depends on the strength of the noise. For weak noise one observes a catastrophic shift, 
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while under strong noise the transition is again continuous. In both cases, the continu-
ous (second order) transition belongs to the directed-percolation equivalence class.

In this paper we would like to extend the work of [26]. We consider the one-dimen-
sional case, and focus our attention on two aspect of the relationships between the 
deterministic and the stochastic dynamics: the propagation of fronts when one phase 
invades the other, and the eect of memory on the transition between the active and 
the extinction phase.

In the next section we study the remnants of the deterministic behavior in the sto-
chastic system. Deterministically, the Maxwell (stall) point (see figure 1) separates the 
region where desert invades vegetation from the region where vegetation invades the 
desert. Under demographic stochasticity, the transition point is inevitably to the left of 
the Maxwell point [26], and above the transition the vegetation eventually collapses (in 
regions II, III and IV indicated in figure 2). Still, we would like to check the possibility 
of a transient invasion (of desert into vegetation or vegetation into desert—see below) 
in these regimes of parameters.

Figure 1.  The dierent regime-shift scenarios for a vegetation system with strong 
positive feedback are illustrated in this cartoon, where full lines represent stable 
fixed points of the vegetation dynamics and the dashed line the unstable fixed 
point between them. For very low stress the system admits only one stable state 
with high vegetation density, while for very high stress there is a region with only 
one, low density state. For intermediate stress the system supports, for each stress 
value, two alternative states separated by an unstable fixed point. Below the 
unstable fixed point the vegetation density is too small and positive feedback is 
too weak therefore the density shrinks, while above this point the density increases 
(bold arrows). In well-mixed situations the system stays in one of its stable states 
until it hits the corresponding tipping point where it undergoes a catastrophic shift 
(saddle-node bifurcation). In spatial domains the low-vegetation (desert) phase 
invades the high-vegetation one to the right of the Maxwell (stall) point, while the 
high vegetation invades the desert if the stress is smaller than its Maxwell point 
value [17].

https://doi.org/10.1088/1742-5468/aa82c5
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In section 3 we address a more practical question, the eect of long term memory, in 
the context of a model that includes a seed bank in the soil. We will show that memory 
makes the system more resilient against the eects of demographic stochasticity so the 
shift of the transition point is larger than the shift predicted by the deterministic model 
but the transition is still continuous and directed-percolation like. This section is fol-
lowed by a general discussion and conclusions.

2. Front propagation and invasion in the stochastic model

The most popular model for a catastrophic desertification is a version of the Ginzburg–
Landau (GL) diusion-reaction model,

ϕ̇ (x, t) = D∇2ϕ (x, t)− αϕ (x, t) + βϕ2 (x, t)− γϕ3 (x, t) .� (1)

Here ϕ represents the vegetation density, D is the diusion coecient, α is the stress 
parameter (measuring the harshness of the environmental conditions), β sets the scale 
of the positive feedback and γ represents the finite carrying capacity of the system.

As the stress parameter α is increased the environmental conditions deteriorate 
and the vegetation density reduces. The first, transcritical, bifurcation (the left tip-
ping point in figure 2) occurs at α = 0, where the state ϕ = 0 becomes stable. The 
right tipping point (a saddle-node bifurcation) occurs at α = β2/4γ, and if the sys-
tem reaches this point the vegetation collapses at once. The Maxwell (stall) point 
occurs at αMP = 2β2/9γ : to the left of this point vegetation invades the desert, while 
to its right desert invades vegetation. The velocity of the invasive front is zero at the 
Maxwell point and is linearly proportional to αMP − α in the vicinity of the Maxwell 
point.

Figure 2.  An illustration of the relationships between the stochastic (red) and 
the deterministic (purple) states of the system as obtained in [26]. Unlike the 
deterministic dynamics illustrated in figure 1, under demographic stochasticity the 
transition is continuous (second order) and must occur to the left of the Maxwell 
point. In region II the deterministic theory predicts that the active (vegetation) 
phase invades the desert, while in region III the desert invades the vegetation.

https://doi.org/10.1088/1742-5468/aa82c5
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Figure 2 illustrates the relationships between the stochastic and the deterministic 
transition dynamics as obtained in [26]. In the presence of demographic noise and an 
absorbing state the transition is always continuous, occurs to the left of the Maxwell point 
and belongs to the directed percolation equivalence class. Accordingly, between the sto-
chastic extinction point αc and the Maxwell point there is a region of parameters where 
the deterministic theory predicts invasion of vegetation while under stochastic dynamics 
the vegetation goes extinct (region II in figure 2). For α > αMP one finds another region, 
where under deterministic dynamics the desert invades (region III). Our aim here is to 
check for the traces of this deterministic behaviors when the system is stochastic.

Even in the quasi-deterministic limit, where the eect of the absorbing state is 
negligible, demographic stochasticity aects the width and the velocity of the invasion 
front [28, 29]. As was shown in [27], under demographic noise the renormalized value 
of β (the positive feedback term) decreases as the length scale increases, meaning that 
at the deterministic Maxwell (stall) point, desert still invades. Here we present a few 
simulations done for strong and intermediate levels of noise, where the eect of the 
absorbing state is pronounced.

In the simulation we have compared the outcomes of the stochastic dynamics with 
dierent initial conditions (see figure  3). In case A the initial condition is inhomo-
geneous, half the system (0 � x � L) is in the vegetation state (as predicted by the 
deterministic theory) and the other half (L � x � 2L) in the absorbing state. In the 
homogeneous case B, the system is initially in the vegetation state for all x. We then 
tracked the value of

∆(t) ≡
∫

ϕA(x, t) dx−
1

2

∫
ϕB(x, t) dx� (2)

through time. In the region of parameters that corresponds to phase II one may sup-
pose that for some time the deterministic prediction still holds and vegetation invades 
the desert, so ∆ will increase in time. This increase has to be a transient since eventu-
ally the system must collapse to the absorbing state, but it may manifest itself for a 
while. Similarly, if the desert invades deterministically (phase III) ∆ should decrease in 
time. Finally if spatial invasion have no significant role, ∆ would be time independent. 
These scenarios are illustrated in figure 3.

The vegetation system was simulated using the algorithm presented in [26]. The 
deterministic equation (1), with D = 0.2, β = 0.4, γ = 0.02, and dierent values of α, 
was integrated (using the Euler method, timesteps of 0.001) for a one dimensional lat-
tice with 2L = 750 and reflecting (no-flux) boundary conditions. Demographic noise 
was introduced into the dynamics by replacing, every ζ units of time, the value of 
ϕ(x, t) by an integer m(x, t), drawn from a Poisson distribution,

P (m) = e−ϕ(x)ϕ
m(x)

m!
.� (3)

We have used asynchronous update of the lattice. For the simulation in phase I, II and 
IV, ζ = 30 was taken, while in region III we implemented dierent levels of noise as will 
be explained below. The results are shown in figures 4–6.

In the active phase of the stochastic dynamics (region I of figure 2) the vegeta-
tion invades the desert as expected (figure 4), and ∆ grows in time until it reaches an 

https://doi.org/10.1088/1742-5468/aa82c5
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equilibrium value. This equilibrium value is smaller than the prediction of the deter-
ministic theory, as one expects for a stochastic system with an absorbing state. The 
invasion velocity should decrease as α increases and it reaches zero at the transition 
point. As demonstrated in [26], the transition occurs to the left of the Maxwell point 
and belongs to the directed percolation equivalence class, so the front velocity should 
vanish at this transition point (for details, see [30]), leaving a region (II) where the 
deterministic front velocity is finite (vegetation invades desert) but under stochasticity 
the vegetation cannot invade.

Before we consider region II, let us focus our attention on the third region, where 
deterministically the desert invades. Since this region is in the stochastic extinction 
phase, the vegetation will collapse in the long run even if the initial conditions are 
homogenous and active (i.e. correspond to case B of figure 3). This collapse will take 
place in two steps: first, the stochastic fluctuations must generate a spatial region 
where the vegetation density is low enough (i.e. it reaches the basin of attraction of the 
absorbing state) and then this desert ‘nucleus’ invades the rest of the system with the 
(renormalized [29]) Ginzburg–Landau velocity. Before this nucleation, one can see the 
desert invade the vegetation, while above this typical nucleation time the vegetation 
collapses everywhere and ∆ approaches zero.

This behavior is seen in figure 5. If the noise is relatively strong and the nucleation 
time is short, one observes no eect of invasion. For the same set of parameters but 

Figure 3.  Identification of spatial eects by comparison of the time evolution of 
two dierent types of initial conditions. We have traced the overall vegetation in 
a one dimensional system that was prepared in a homogenous spatial state that 
corresponds to the stable vegetation fixed point of the deterministic dynamics (B). 
This value was compared with another system (A), in which this state covers half 
of the system while the other half is in bare soil (desert). ∆, as explained in the 
text, is the dierence between the total biomass of A and half of the biomass of B. 
If the vegetation state invades the desert, even as a transient, one expects a growth 
of ∆ in time, as illustrated by the blue dashed line in the right panel. The opposite 
scenario, an invasion of the desert, will yield a curve with negative slope (green). If 
spatial invasion plays no essential role, ∆ is expected to be time independent (red).

https://doi.org/10.1088/1742-5468/aa82c5
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with weaker noise (larger ζ), ∆ first decreases (indicating invasion by the desert) and 
then grows back towards zero. The same behavior is seen in figure A1 below, where a 
dierent algorithm was used (see appendix).

Phase III admits a well defined semi-classical limit. While the nucleation time 
increases exponentially with ϕ(x), the inverse of the noise level at a site, the corrections 
to the front velocity scale like 1/ϕ [29] so as ϕ increases one can observe the deter-
ministic behavior for exponentially long times. Although the system is formally in the 
stochastic extinction phase, in every finite sample the eect of deterministic invasion 
will be much stronger than the accumulation of stochastic local extinctions.

At the Maxwell point the deterministic front velocity is zero, but under demographic 
noise the desert still invades vegetation since (as explained above) the renormalized 
positive feedback term is smaller than its bare value. This behavior was demonstrated 
in [29]. We failed to simulate our system at the stall point since the noise was too large, 
but in the appendix we present results that were obtained using a dierent numerical 
technique and support this conclusion.

This brings us to back to phase II, where deterministically the vegetation invades, 
but stochastically the system is in the extinction phase. This region has no semiclassi-
cal limit: as ϕ (or ζ) increases (the demographic noise decreases) the extinction point 
approaches the Maxwell point and this phase disappears. Since the desert invades at 
the Maxwell point it must invade with finite velocity to the left of this point, but now 
the invasion is only due to stochastic eects (without stochasticity the active state 
invades) and for any fixed value of α the velocity changes sign as ϕ increases. To put 
it another way, for any fixed strength of demographic stochasticity there is, somewhere 
in region II, a critical value, αSMP, the stochastic Maxwell point, and to the left of this 
point the desert does not invade.

The only question that remains is about the relationship between αc, the extinction 
transition point (above it vegetation no longer invades the desert) and the stochastic 

Figure 4. ∆ as a function of t in the active case (phase I, α = −1.8 where the 
stochastic transition is around αc ∼ −0.7). As expected ∆ grows and reaches 
equilibrium at long times. Biomass density is measured in units of the deterministic 
fixed point, so the value it approaches is slightly smaller than one. The line 
presented here is an average over the time evolution of 100 systems.

https://doi.org/10.1088/1742-5468/aa82c5
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Maxwell point αSMPs (below it desert cannot invade vegetation). Do these two point 
coincide? Unfortunately, we did not succeeded in answering this question using our 
numerics since fluctuations in the relevant regime are too strong.

Finally, in region IV (figure 6) the decay of the active phase is deterministic so both 
systems show the same behavior, as expected.

3. Memory eect and seed bank

In standard vegetation systems the reproduction of individuals is aided by the dispersal 
of seeds. Seeds do not necessarily germinate when the environmental conditions allow it 
(e.g. during the first wet season); instead, they may enter a dormant state and germinate 
only after a few years. Seeds dormancy is a known bet-hedging strategy which is cru-
cial to the ability of a species to expand and survive in harsh environmental conditions 

Figure 5.  The average value of ∆ (dark circles) and its (one standard deviation) 
error bars are plotted as a function of t where α = 1.97 is in phase III. For small 
noise (ζ = 30, panel a) one cannot detect deviations between ∆ and zero through 
the (one standard deviation) error bars. For weak noise (Panel b, ζ = 106) the 
decay and growth are pronounced. Similar results were obtained using a dierent 
simulation technique for the same system, see appendix.

https://doi.org/10.1088/1742-5468/aa82c5
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[31, 32]. From the modeler’s perspective, this behavior introduces an eective memory 
to the dynamics, as the ‘absorbing state’ is not the state without vegetation but the 
state with no vegetation and no seeds. In this section we present a numerical study of 
a model that takes into account this memory eect.

Figure 6. ∆ as a function of t when α = 2.1 is in region IV, where the vegetation 
collapses and the time to local extinction is logarithmic in the population size. The 
lines are an average over the time evolution of 100 systems, and the error bars 
represent one standard deviation.

Figure 7.  Equilibrium vegetation density as a function of α for the model (4). In 
all systems β = 0.4, γ = 0.02, D = 0.2 and ζ = 30. Results are presented for the 
case with no seeds F = g = µ = 0 (blue diamonds), for F = g = 0.2 and µ = 0.15 
(deterministic shift gF/(g + µ) = 0.11, red dots) and for F = 0.5, g = 0.2 and 
µ = 0.15 (deterministic shift gF/(g + µ) = 0.29, green triangles). The shift of the 
stochastic critical point is larger than the deterministic shift (0.14 instead of 0.11 
in the first case, 0.47 instead of 0.29 in the second case) due to the buering eects 
of the seed dynamics.

https://doi.org/10.1088/1742-5468/aa82c5
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To do that, we have used one of the standard deterministic models of vegetation-
seed dynamics (this specific version was adapted from Godoy et al [33]). Here, as before, 
ϕ is the vegetation density that admits the same Ginzburg–Landau dynamics, and 
θ(x, t) is the density of seeds in the soil. Seeds germinate at a rate g and die at a rate 
μ. Finally, F is the rate (per biomass) in which the vegetation produces seeds.

ϕ̇ (x, t) = D∇2ϕ (x, t)− αϕ (x, t) + βϕ (x, t)2 − γϕ (x, t)3 + gθ (x, t)

θ̇ (x, t) = Fϕ (x, t)− (g + µ) θ (x, t) .
� (4)

The deterministic steady states of (4) are the sets of ϕ, θ where both ϕ̇ and θ̇ are 
zero. One may use that to solve for θ at the steady state, and by introducing this value 
of θ into the ϕ equation it turns out that the deterministic phase diagram is shifted 

Figure 8.  Vegetation density versus time at the transition point, plotted on a 
double logarithmic scale. The decay fits quite nicely a straight line with slopes that 
are very close to the values predicted for the directed percolation equivalence class, 
δ ∼ 0.159. The upper panel was obtained from the model with F = 0.2, g = 0.2 and 
µ = 0.15, the lower panel for the model with F = 0.5, g = 0.2 and µ = 0.15. The 
density versus α diagram for these models is given in figure 7.

https://doi.org/10.1088/1742-5468/aa82c5
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rigidly to the right by gF/(g + µ). However, as seen in figure 7, the shift of the stochas-
tic transition point is larger than its deterministically expected value. This happens 
since the long-term memory of the system with seeds acts to buer the system against 
the eect of stochasticity.

While the eect of memory increases the region of parameters that correspond to 
the active state, the characteristics of the transition itself appear to be the same. As 
explained in [26, 27], when the transition in the presence of demographic noise falls 
into the directed percolation equivalence class the density of vegetation decays at the 
transition point like ϕ ∼ t−δ, where in 1d, δ ∼ 0.159. This behavior characterizes also 
the transition of the model with long-term memory and seeds, as indicated in figure 8.

4. Discussion

In their very influential work, ‘The importance of being discrete (and spatial)’ [16], 
Durrett and Levin considered two aspects of reality that may alter the predictions of 
a deterministic mean-field (well-mixed) theory in ecosystems. One is the invasion of a 
metastable by a stable phase, which yields a Ginzburg–Landau propagating front and 
eventually implies a gradual transition [17], and the other is the eect of demographic 
stochasticity (discreteness of individuals) that may lead to sustainable coexistence even 
in the absence of an attractive fixed point [34].

Here we have shown that these two aspects of the dynamics—being spatial and 
being discrete—may also interfere with each other. When demographic stochasticity is 
superimposed on spatial dynamics, the net result is not Ginzburg–Landau invasion and 
not the coexistance of the two states together. Instead the vegetation invasion dynam-
ics is completely identical with that of a Fisher front, i.e. of the invasion of a stable 
to an unstable (rather than metastable) state, despite the fact that the deterministic 
system supports two attractive fixed points.

Seed dormancy is a known phenomenon in desert annuals [31, 32], but in most 
cases it is considered as a bet-hedging strategy against environmental variations. Here 
we have shown that such a strategy makes the system also more resilient against the 
eect of demographic stochasticity, as it diminishes the influence of the absorbing 
state. On the other hand this memory eect via the seed bank does not change the 
properties of the transition itself. This may be related to the robustness of the directed 
percolation transition against spatio-temporal noise [35]. The case of non-Markovian 
memory, like seeds with power-law statistics for germination time, may yield, perhaps, 
a dierent type of transition, but the relevance of such a case to realistic systems is 
not yet clear.
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Appendix. Front propagation at the Maxwell point

In this appendix we describe a dierent numerical technique aimed at simulating the 
stochastic dynamics, and we implement this technique at the deterministic Maxwell 
point. The numerical procedure used here is more realistic and more stable than the 
one used along this paper. However it does not allow one to vary the strength of the 
demographic stochasticity when all other parameters are kept fixed, so we use it only 
for this specific task.

For each site with n individuals, the per-individual death rate is taken to be

d1 = α + γ(n− 1)(n− 2)/6,

the per-individual birth rate is

b1 = β(n− 1)/2,

and the per individual hopping rate is D. The overall ‘activity rate’ per individual is 
thus,

r = d1 + b1 +D.

Accordingly, if r∆t � 1 (where ∆t is the simulation time-step) the chance that a 
single individuals does nothing during this period of time is

Q = exp(−r∆t),

the chance that it give birth is b2 = (1−Q)b1/r, death occurs with probability 
d2 = (1−Q)d1/r and the probability of hopping is h2 = (1−Q)D/r. By picking 
five numbers from a multinomial distribution for n individuals with probabilities 

Figure A1. ∆ versus time as simulated by the multinomial algorithm for γ = 0.001, 
β = 0.02, D = 0.2 and α = 0.136 667 (at the deterministic Maxwell point). A one 
dimensional system with 2L = 300 was simulated, using ∆t = 0.1. The deterministic 
solution for the steady state at this point is n = 42.

https://doi.org/10.1088/1742-5468/aa82c5
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[Q, h2/2, h2/2, b2, d2] one obtains a corresponding vector of integers, p, in which the 
number of individuals that stay inactive is p1, p2 and p3 jump to the left/right, p4 give 
birth and p5 die. The number n is then updated to p1 + 2p4, and the hopping individu-
als are deposited in a dierent array and are added to n only at the end of each turn 
(asynchronous updating) to avoid artificial drifts.

Figure A1 shows ∆ (obtained, as in the main part of this paper, by comparison 
between two initial conditions, one homogenous and one with half vegetation) as a 
function of time at the Maxwell point, and one can see clearly that the desert invades 
at short times, then the vegetation in both systems collapses.
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