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a b s t r a c t

The dynamics of two competing species in a finite size community is one of the most studied problems in
population genetics and community ecology. Stochastic fluctuations lead, inevitably, to the extinction of
one of the species, but the relevant timescale depends on the underlying dynamics. The persistence time
of the community has been calculated both for neutral models, where the only driving force of the system
is drift (demographic stochasticity), and for models with strong selection. Following recent analyses that
stress the importance of environmental stochasticity in empirical systems, we present here a general
theory of the persistence time of a two-species community where drift, environmental variations and
time independent selective advantage are all taken into account.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

One of the main contemporary challenges of the life sciences
is to understand the factors that allow for the maintenance of
biodiversity (Sachs et al., 2009; Chesson, 2000). A fundamental
proposition in population genetics and community ecology, the
competitive exclusion principle (Hutchinson, 1961; Stomp et al.,
2011), suggests that when two genetic alleles or two biological
species compete for the same resources only one species/allele
will survive. Despite its theoretical importance and its firm math-
ematical foundations, many natural systems appear to violate this
principle, allowing for coexistence of many competing species or
(higher than expected) polygenic variations.

In community ecology, the simplest explanation for such a
situation is resource partitioning, meaning that multiple limiting
resources may give rise to a collection of species, ranging up to the
number of resources, with each species excelling with respect to
one resource (Tilman, 1982). However the identification of limiting
resources is difficult in practice, and in some cases (tropical trees
Ter Steege et al., 2013, fresh-water plankton Hutchinson, 1961;
Stomp et al., 2011 and coral reef Connolly et al., 2014) the resource-
partitioning mechanism seems implausible. An understanding of
possible alternative coexistence-promoting mechanisms is a sub-
ject of much interest both in community ecology (Chesson, 2000)
and population genetics.

Taking into account the inherent stochasticity in biological pop-
ulations dynamics, one realizes that the biodiversity puzzle is, in
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fact, a question about time scales. The dynamics of every popula-
tion admits an absorbing state: once the species goes extinct, it
cannot recover again. Accordingly, every biosystem suffers from a
continuous loss of life forms, a process that reduces its diversity.
Biodiversity equilibrates when the rate of extinction matches the
rate at which new types are introduced into the system as a
result of speciation or mutation events (or, for a local community,
migration from a regional pool).

An important theoretical framework in which this insight is
implemented is the neutral model, both in its well-mixed form
(Kimura, 1985) (in genetics) and in its spatial, mainland-island
version (Hubbell, 2001a; Volkov et al., 2003; Rosindell et al., 2011)
in community ecology. The neutral model assumes that all species
are demographically equivalent (no selective advantage) and that
species abundance varies only due to genetic/ecological drift (de-
mographic stochasticity). When two species compete under these
conditions, the persistence time of the community (the time until
one of themgoes extinct, also knownas the absorption time Ewens,
2004) is, on average, N generations, where N is the size (number
of individuals) of the community. If the timescale on which new
types are introduced into the system (by speciation, mutation
or migration) is comparable to the persistence time, the typical
number of species will be larger than one.

Recently, a series of studies showed that the abundance varia-
tions in empirical ecological communities are much stronger than
those predicted by the neutral model (Kalyuzhny et al., 2014b,
a; Chisholm et al., 2014). This appears to reflect the presence of
environmental stochasticity, i.e., the random variations in species
relative fitness caused by fluctuations in exogenous factors like
precipitation, temperature, predation pressure and so on (Lande

https://doi.org/10.1016/j.tpb.2017.11.003
0040-5809/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.tpb.2017.11.003
http://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2017.11.003&domain=pdf
mailto:nadav.shnerb@gmail.com
https://doi.org/10.1016/j.tpb.2017.11.003


58 M. Danino et al. / Theoretical Population Biology 119 (2018) 57–71

et al., 2003). Demographic noise accounts for the stochastic factors
that affect each individual independently, so the average fitness of
a population is fixed and abundance fluctuations per generation
scale like the square root of population size. Conversely, under
environmental stochasticity the fitness of all individuals in a cer-
tain population fluctuates in a correlated manner, leading to much
stronger abundance variations.

Based on this observation, a time-averaged neutral theory of
biodiversity has been suggested (Kalyuzhny et al., 2015; Danino
et al., 2016), where environmental stochasticity affects the system
but species are still symmetric since each species’ fitness, when
averaged over time, is identical. Again, species go extinct at a certain
rate, now determined by both demographic and environmental
stochasticity, and biodiversity reflects the balance between ex-
tinction and speciation (or migration) rates. This model has been
shown to fit quite nicely the static and dynamic characteristics
of a (local) community of tropical trees (Kalyuzhny et al., 2015;
Fung et al., 2016); both the species abundance distribution and the
abundance variations are similar to the predictions of themodel as
obtained from numerical simulations.

The inclusion of environmental stochasticity into the model
makes it necessary to revisit the timescale problem. Environmental
stochasticity is stronger than drift, and overshadows its effect in
large abundance populations. Environmental stochasticity at first
sight appears to be a destabilizing factor: it increases the amplitude
of abundance variations and hence shortens the time until a pop-
ulation reaches a low-abundance state and goes extinct. The naive
expectation, thus, is that environmental stochasticity shortens the
persistence time, though one would like to quantify this argument
and to find the N dependence explicitly.

However, under some circumstances environmental stochastic-
ity may become a stabilizing mechanism, as suggested by Ches-
son and collaborators (Chesson and Warner, 1981; Hatfield and
Chesson, 1989, 1997). These authors show that environmental
variations may enhance the chance of invasion of low-abundance
species via the storage effect: rare species, when compared with
common species, have fewer per-capita losses when their fitness
is low and more gains when their fitness is high. As a result, the
system may admit stochastic persistence: every species’ abun-
dance fluctuates, but all are peaked about a finite value by a
noise-induced stabilizing force (see Schreiber, 2012 for a detailed
discussion of the persistence properties in models without demo-
graphic noise).

Chesson and coworkers introduced the lottery model, a minimal
model that captures the essence of the storage effect, and ana-
lyzed its stability properties. However, they considered a system
with pure environmental stochasticity and without demographic
stochasticity. In such a system there is no extinction per se, as
population density may take arbitrarily small values. Accordingly,
the criteria they used to define a stable equilibrium was the nor-
malizability of the probability density function. This strategy did
not allow them to calculate persistence times,making it impossible
to analyze diversification rates.

In a recent paper (Hidalgo et al., 2017), Hidalgo et al. considered
the two-species community persistence problem in the presence
of environmental stochasticity, with and without storage. Like
(Chesson andWarner, 1981), they analyzed the dynamics of a two-
species community with pure environmental stochasticity, such
that the number of individuals belonging to each of the species
is not necessarily an integer. For a community of N individuals,
extinction of a species occurred, in their work, when that species’
fraction of the population becomes smaller than 1/N . Looking
at the system under dichotomous (telegraphic) environmental
stochasticity, they were able to calculate the large N asymptotic
behavior of extinction times for a time-averaged-neutral commu-
nity. This approximation, the replacement of demographic noise

by a cutoff at threshold value of 1/N , corresponds to the neglect
of all its stochastic aspects, keeping only the absorbing state at
zero. To close the gap between the asymptotic behavior at large
N and the regimes where demographic noise is important, Hidalgo
and coworkers suggested the existence of (one or two parameter)
scaling functions and provide numerical evidence to support their
conjecture.

Here we solve the persistence time problem in all its glory, tak-
ing into account explicitly both demographic and environmental
stochasticity. This allows us to extend the theory suggested by
Hidalgo et al. in the following senses:

1. An explicit, closed form for the scaling functions (in terms
of a single or a double integral) is derived, so the answer
covers all the range of parameters. In particular, our for-
mulas converge to the pure demographic limit when the
environmental stochasticity vanishes.

2. The expressions suggested in Hidalgo et al. (2017) for the
large N limit are recovered, but we can calculate also sub-
leading terms in this asymptotic series. This allows us to
identify the parameter region where the asymptotics is ac-
curate, and to suggest simple analytic approximations that
cover a much wider region of parameters.

3. We can calculate the persistence time for a single mutant.
This is an important quantity, as it sets the threshold for
clonal interference and may be relevant to the small island
effect in island biogeography (see next section).

Moreover, we have extended the work of Hidalgo et al. (2017)
to include the case where one species has on average a selective
advantage with respect to the other species, superimposed on the
environmental variations.

This paper is organized as follows. In the next section we pro-
vide a few basic intuitive arguments and a summary of the main
results. Section 3 deals with the case of pure demographic noise, in
Section 4 we consider the case of demographic and environmental
stochasticity (where fitness fluctuates in time, but themean fitness
difference is zero) without storage effect, and in 5 the case with
storage effect. Section 6 is devoted to the effect of selection (when
the mean relative fitness is nonzero) on persistence time when it
acts against the storagemechanism, and is followed by a discussion
section. For the sake of completeness we describe in Appendices
the results for a system with selection and pure demographic
noise (Appendix B) and selection with both environmental and
demographic noise, but without storage (Appendix C).

2. Intuitive arguments, glossary and summary of the main re-
sults

In this section we explain the main issues considered in this
paper, introduce the notations, provide a glossary (see Table 1) and
briefly sketch the main results.

Throughout this paper we consider two ‘‘species’’ (genetic
types, zoological species, bacterial strains) that compete with each
other for, say, a single limiting resource. When the demographic
rates of these two species are equal and the strength of the in-
traspecific competition is equal to the strength of the interspecific
competition, themodel is neutral (Hubbell, 2001b) and the dynam-
ics is driven solely by stochastic effects. The analysis of this case is
usually based on a zero-sum game approximation, assuming that
the total number of individuals is fixed in time and so neglects
the short-lived fluctuations that may change the community size
(Volkov et al., 2003). We adopt this approximation even for the
cases where one of the species has a (transient or permanent)
selective advantage: the number of individuals in the community
is kept fixed, and selection determines the instantaneous tendency
of the abundance of one species to grow at the expense of its
opponent and vice versa.
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2.1. Persistence time: definition and the importance of initial condi-
tions

We define the persistence time (also known as the absorption
time Ewens, 2004), of a two species community as the mean time
until one of the species goes extinct. To account for the effect of
demographic stochasticity we implement a set of individual based
models. In each elementary step of these models one individual
is chosen at random to die and is removed, with its slot being
captured by an offspring of another individual, chosen with some
probability that reflects its (instantaneous) relative fitness. Such a
stochastic birth–death process leads, inevitably, to the extinction
of one of the species, and our goal is to calculate howmuch time, on
average, it takes for the system to reach this monomorphic state,
given the size of the community, N , and the initial conditions, in
which species 1, say, is represented by n0 individuals and species
2 has N − n0 individuals. Time is measured in units of genera-
tions, where a generation is defined as N elementary death-and-
recruitment steps.

We do not calculate here the fixation time, which is defined as
the average time it takes a specific species to reach an abundance
of N conditioned on its success. The quantity we are looking at
measures the persistence time of a community (i.e., the time to
fixation or loss).

While we provide expressions for any initial condition, two
special cases are of particular importance. One is the case of a
single mutant introduced into a system, i.e., n0 = 1, N − n0 =

N − 1. This is the relevant case when a new type appears due to a
single mutation/speciation event, or when the system is subject to
weak immigration from a regional pool. The biodiversity (species
richness, genetic polymorphism) of such a system depends on the
balance between the rate of appearance of new types (rate of
mutation, migration, or speciation) and the average time it takes
for the single mutant abundance to reach either zero or N . If the
rate of mutation is small (in units of inverse persistence time),
the community will be monotypic most of the time. If the rate is
high, the typical state hasmore than one species, and thus the ratio
between these two rates determines the threshold for clonal inter-
ference (Gerrish and Lenski, 1998). By the same token, a recently
proposed explanation for what is known (in island biogeography)
as the small island effect suggests that the number of niches per
island is fixed and for small islands the rate of absorption is smaller
than the rate of immigration (Chisholm et al., 2016). Under these
assumption, an island is ‘‘small’’ as long as the immigration rate is
smaller than the inverse of the persistence time calculated here.

Another interesting scenario is the case where both n0 and N −

n0 are initially large. Thismay happenwhen the community is sub-
ject to strong invasion, when speciation occurs allopatrically and
then the two groupsmix again, for protracted speciation (Rosindell
et al., 2010) or in experiments in which two bacterial strains or
two vegetation species aremixed (Jiang andMorin, 2007). Onemay
get insight into the persistence time in this case by identifying the
initial state for which this time is maximized (e.g., in a symmetric
system, this will be the initial state n0 = N/2) and calculating
the persistence time for this state. In what follows we provide
simple expressions for these two cases: the maximum value of the
expected persistence time and the expected persistence time for a
single mutant.

2.2. Demographic stochasticity (drift) and the neutral model

Demographic stochasticity is defined, in our models, as those
aspects of stochasticity that affect individuals in an uncorrelated
manner. The origin of these stochastic forces is not important: they
may reflect genetic variations, fluctuations of the local environ-
ment or any other factor; what matters is that their effect on the

reproductive success of a given individual is independent of their
effect on other individuals that belong to the same species.

When the two species in the community are (on average) demo-
graphically identical, andpopulation variations are driven solely by
demographic noise (in our zero-sum model, this implies that one
individual is chosen to die and another is chosen to reproduce, both
choices are random and the species affiliation does not play any
role), the dynamics is known as neutral. Under neutral dynamics,
themaximumvalue of the expected persistence time (measured in
units of generations, see below) is known to be proportional to N
(Crow et al., 1970). We review the features of the neutral model in
Section 3.

2.3. Selection

When one species has a selective advantage with respect to the
other, its chance to capture the whole community is, of course,
larger. In the game considered herewe always kill one individual at
random, with no distinction between species, but if species 1, say,
has a selective advantage, the per capita chance of an individual of
species 1 to capture the empty slot is larger than the chance of a
species 2 individual. The difference between these two per capita
chances is proportional to the selection parameter η0.

On average, a species with selective advantage grows exponen-
tially, so the time it takes to reach N from n0 = 1 will scale,
deterministicaly, like ln(N)/η0 (Crow et al., 1970). This behavior
is preserved under demographic noise, as demonstrated in Ap-
pendix B.

2.4. Environmental stochasticity

This paper is focused on the effect of environmental stochastic-
ity (fitness fluctuations) on the persistence time. In contrast with
demographic noise, environmental stochasticity reflects those as-
pects of the environmental variations that affect coherently the
reproductive success of all the individuals that belong to a certain
species. As the environmental conditions vary, the relative fitness
of speciesmay change. Accordingly, for large populations the effect
of environmental stochasticity is more important than the drift
(Lande et al., 2003). However, without demographic stochasticity
there is no extinction; to calculate extinction times onemust either
consider explicitly the demographic noise, as we are doing here, or
impose a threshold on the density at the level of one individual, as
done in Hidalgo et al. (2017).

When both species have the same average fitness, but the
fitnesses fluctuate randomly so that at any single moment one
of them is superior (i.e., species fitness varies in time, but when
averaged over time the two species are still symmetric) we speak
about a system under environmental stochasticity and character-
ize it by two quantities: the squared amplitude of fitness varia-
tions, γ 2, and the correlation time of the environment (in units of
generations), δ. Environmental stochasticitymay be superimposed
on an average fitness advantage of one species, and in that case
we make a distinction between selection (the time independent
component of the relative fitness, denoted by η0) and stochasticity
(zero-mean fitness fluctuations). For clarity, throughout this paper
we use the word ‘‘selection’’ when we refer to the case where the
time-averaged (logarithmic) fitness advantage is nonzero, while
‘‘environmental stochasticity’’ refers to zero-mean fluctuations of
this quantity.

The simplest way to think about a system driven by environ-
mental stochasticity (with no selection and no demographic noise)
is to consider it as a random walk of the logarithmic relative
abundance. If x = n/N is the fraction of one species and ẋ =

±γ x(1 − x), the system performs an unbiased random walk on
the z = ln[x/(1 − x)] axis with an effective ‘‘diffusion constant’’
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γ 2δ. Since the typical time needed for a random walker to cross a
distance L scales like L2, one expects that themaximumpersistence
time for a community of size N (so − ln(N) < z < ln(N) if
extinction is declared when x reaches 1/N) will scale like ln2(N)
for large N . This asymptotic behavior was found by Hidalgo et al.
(2017). Here, in Section 4, we provide the expression for any N
and any initial conditions (Eqs. (15) and (16)), calculate the leading
corrections to the large N result and identify the region in which
this log squared asymptotics is valid (Eqs. (18) and (20)). We also
show that the result for a single mutant initial condition has a
different scaling (Eq. (21)) and explain why this happens.

2.5. Noise induced stabilization: the storage effect

Environmental stochasticity in this model is thus seen to be
a destabilizing factor, as it increases the amplitude of abundance
fluctuations and shortens the persistence timescale from N gen-
eration (with pure demographic noise) to ln2(N). However, under
some circumstances the environmental stochasticity stabilizes the
system and increases substantially the persistence time. This pos-
sibility was discovered by Chesson and coworkers (Chesson and
Warner, 1981; Chesson, 1994), and is known as the storage effect.

Let us demonstrate the stabilizing effect of environmental
stochasticity using a simple version of the Chesson–Warner lottery
game. To do that, one may think about individuals as trees, say,
and assume that the seed bank in the soil reflects the abundance of
each species. Upon death of an individual one of the seeds is chosen
to capture its location as an adult tree with a chance proportional
to its fitness, and so the overall chance of a species to increase its
population reflects both its abundance and its instantaneous fit-
ness, superimposed nonlinearly. As an example, let us think about
a ‘‘winner takes all’’ case, where the species with higher fitness
wins the empty slot for certainty. Starting with 8 red individuals
and 2 green in a community of 10, the chance to end up with 7 red
and three green is 0.4 (a red is killed with probability 0.8, the green
captures the slotwith probability 1/2 since it is preferred half of the
time) while the chance to end up in the 9:1 state is only 1/10. Rare
species have a larger chance to grow in abundance just because
they are rare.

The persistence time for a system with environmental stochas-
ticity and storage effect was considered by Hidalgo et al. (2017),
who suggested that for large N it scales like N1/δ . Our analysis pro-
vides an expression for any N and any initial condition (Eq. (32)),
with an analysis of the large N behavior and the crossover to the
N1/δ regime (Eq. (35)). We also consider the same problem for a
single mutant (Eq. (37)), showing that in this case the scaling of
the persistence time with N is also N1/δ . Moreover, the maximum
persistence time and the persistence time of a systemwith a single
mutant differ only by a factor of γ 2/2.

2.6. The interplay between stochasticity and selection

The situations described so far correspond to the standard neu-
tral model (perfect demographic equivalence, zero fitness differ-
ences between species and individuals) and to the time-averaged
neutral model (TNTB) (Kalyuzhny et al., 2015; Danino et al., 2016),
where the species have the same fitness on average, but at each
moment one species has higher fitness. In both cases, stochasticity
(demographic or environmental) is the only driver of abundance
variations.

However, the generic scenario appears to be the case where
a time independent selective advantage to one of the species is
superimposed on environmental variations that may give instan-
taneous superiority to its opponent (Bell, 2010).

We consider this situation, with and without storage effect, in
Section 6 and Appendix C. For the case without storage we provide

the general formula in (C.5), showing that in the large N limit,
selection alone determines the persistence time (Eq. (C.9)). With
storage, the situation is much more interesting: there is a scaled
selection parameter s̃ = 2η0/γ

2, and as long as this parameter
is smaller than (1 − δ), noise induced stabilization wins and the
time to extinction grows superlinearly with N (like N (1−s̃)/δ). These
results are summarized in Eqs. (41) (general formula) and (49)
(large N asymptotics).

To allow for a comparison, the results for the main models
considered below are summarized in Table 2. The table shows
only the leading asymptotic behavior at large N , together with
references to the appropriate formulas in the text.

3. Neutral dynamics with pure demographic stochasticity
(drift)

To set the framework for the next sections and to clarify a few
technical points, let us begin by considering the already studied
(Crow et al., 1970; Karlin and Taylor, 1981) case of a two species
systemwith fixed community size N and pure demographic noise.
Species #1 is represented by n individuals and species #2 by N − n
individuals. During each elementary step one individual (chosen
at random) dies (is removed from the community, leaving a gap),
and an offspring of another (again, randomly chosen) individual, is
recruited into this gap.We fix the time unit as a generation, so that
the duration of each elementary birth–death event is 1/N .

If the birth–death event involves two conspecific individuals
(one dies and the offspring of the other captures the vacant gap)
the frequencies of the two species remain fixed. The chance of
an interspecific substitution (an elementary event in which the
frequencies of the two species are modified) is,

Fn = FN−n =
2n(N − n)
N(N − 1)

, (1)

where in the continuum limit we use x = n/N and the approxima-
tion,

F (x) = 2x(1 − x),

since N ≫ 1 such that N − 1 ≈ N .
Without loss of generality, let us focus on the first species,

represented at t = 0, say, by n0 individuals. Eventually the system
must reach one of the two absorbing states, n = 0 or n = N . The
mean persistence time of the two species community (time until
fixation of one of the two species, starting from n0), Tn0 , satisfies
the backward Kolmogorov equation (BKE) (Redner, 2001),

Tn0 = (1 − Fn0 )
(
Tn0 +

1
N

)
+ Fn0

(
1
2
Tn0−1 +

1
2
Tn0+1 +

1
N

)
, (2)

or equivalently (from now on we refer to n0 simply as n, since
Eq. (2) does not involve explicitly the dynamics of the system),

−
1
N

= Fn ·

[
−Tn +

1
2
Tn−1 +

1
2
Tn+1

]
(3)

with the boundary conditions

T0 = TN = 0. (4)

To write the BKE (3) as a differential equation, we consider
x ≡ n/N as a continuous variable and expand T (x±1/N) to second
order, obtaining

−
N

x(1 − x)
=

∂2T (x)
∂x2

. (5)

Integrating twice and plugging in the boundary conditions (4) one
finds,

T (x) = −N[x ln(x) + (1 − x) ln(1 − x)], (6)
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Table 1
Glossary.

Term Description

N Number of individuals in the community (both species).
n Number of individuals belonging to species 1 (N − n belong to

species 2).
x Fraction of species 1, x = n/N . (1 − x is the fraction of species 2)
τ Correlation time of the environment, measured in units of

elementary steps.
δ Correlation time of the environment, measured in generations.
T (x) Mean persistence time for a two species system at x, when the

environment is fixed in time.
S(x) Mean persistence time for a two species system at x, when the

environment is fluctuating between two states, and the average
is taken over both initial conditions and histories.

η0 The time-independent component of the fitness.
γ The amplitude of the fluctuating component of the fitness.
G ≡ Nδγ 2/2 Scaled environmental stochasticity.
s̃ ≡ 2η0/γ

2 Scaled selection.

Table 2
Main results.

Stochasticity Persistence time of a single mutant Maximum persistence time Maximum persistence time with selection

Pure demographic lnN
Section 3, Eq. (8)

N
Section 3, Eq. (7)

lnN
Appendix B, Eq. (B.5)

Demographic + Environmental no storage lnN
Section 4, Eq. (21)

ln2N
Section 4, Eq. (19)

lnN
Appendix C, Eq. (C.9)

Demographic + Environmental weak storage N1/δ

Section 5, Eq. (36)
N1/δ

Section 5, Eq. (37)
N (1−s̃)/δ

Section 6, Eq. (50)

meaning that the persistence time, for every fixed x, grows linearly
with N . Fig. 1 demonstrates the validity of Eq. (6) when tested
against two types of numerical results: a numerical solution of
Eq. (2), written as Tn = 1/N +

∑
mMmnTm and solved by matrix

inversion, and a direct Monte-Carlo (MC) simulation of the under-
lying neutral process, averaged over many realizations. The details
of these numerical techniques are given in Appendix A.

Two important features of (6) are the maximum persistence
time obtained at x = 1/2,

T (1/2) = N ln(2), (7)

and the persistence time of the two species community, when one
species is initially represented by a single individual,

T (1/N) = ln(N). (8)

If ν is the per-birth chance of a single individual of a new type to
enter the system (for example, the chance of a newborn individual
to be amutant, or the originator of a new species, or the chance that
an immigrant from a regional pool, belonging to a different type,
replaces a dead individual), then the typical number of species in
the community will be unity as long as νN ln(N) < 1 (so that
when a new type appears, it typically goes extinct or takes over the
whole community before the next speciation or migration event).
The system typically will be found in a state with more than one
species if νN ln(N) > 1. The value νc = 1/[N ln(N)] is thus the
threshold for clonal interference (Gerrish and Lenski, 1998; Park and
Krug, 2007) and for the small island effect (Chisholm et al., 2016).

Actually, in this simple, pure demographic, case, even the tran-
sition to the continuum is unnecessary. One can instead solve
the difference equation (3) exactly by writing it as a first order
difference equation forWn ≡ Tn − Tn−1,

−
N − 1

n(N − n)
= Wn+1 − Wn. (9)

Accordingly,

Wn = W1 −

(
1 −

1
N

) n−1∑
k=1

(
1
k

+
1

N − k

)
.

Deriving Tn in the same way and applying the boundary condition
T0 = 0 and TN = 0 one finds,

Tn =

(
1 −

1
N

)
(NHN − nHn − (N − n)HN−n),

whereHn ≡
∑n

k=1k
−1 is the nth harmonic number. This expression

converges to Eq. (6) in the large N limit. The maximum persistence
time is,

TN/2 ≈ N
(
ln(2) −

1
2N

+ O
[

1
N2

])
, (10)

so the exact solution differs from the continuum result, Eq. (7), by
a negligible factor in the large N limit.

4. Environmental stochasticity without storage mechanism

In this section we consider a similar Moran (individual based)
process, with the addition of fitness variations caused by envi-
ronmental fluctuations characterized by the quantities γ and δ.
The model is inspired by the standard competitive Lotka–Volterra
dynamics, where two species compete for the same resource. In
its individual based version one may consider two random in-
dividuals fighting for a piece of food, the winner reproduce and
the loser dying. In our zero-sum model, in each elementary step
two individuals (i and j) are chosen at random for a duel. If both
individuals belong to the same species, the result of the duel does
not affect the species’ abundances. In case of an interspecific duel,
the chance of species 1 to win is 1/2− γ /4 when the environment
favors species 2, and 1/2 + γ /4 when the environment favors
species 1 (dichotomous noise).When γ = 0, the pure demographic
game considered in the last section is recovered. Since both species
have the same average fitness as the selective force fluctuates in
time (environmental stochasticity), this situation corresponds to
the time averaged neutrality considered in Kalyuzhny et al. (2015),
Danino et al. (2016) and Hidalgo et al. (2017).

In our model, after each elementary step the chance of the
environment to stay in the same state is taken as 1 − 1/τ , and
the chance of the environment to flip (i.e, ±γ → ∓γ ) is 1/τ .
Accordingly, the environmental fluctuations are characterized by
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Fig. 1. A comparison between the results of a Monte-Carlo simulations, numerical solution of the backward Kolmogorov equation (see methods in Appendix A) and the
analytic results (6) for T (x). In the left panel T (x) is plotted against x for a system with N = 100, where the MC simulation reflect an average over 10000 runs. In the right
panel the maximum lifetime T (1/2) is plotted as a function of N (red filled circles) and is compared with the T = N ln(2) relationships predicted from (6) for x = 1/2. In
both cases the agreement is excellent.

two parameters: γ , the fluctuation amplitude and δ ≡ τ/N , the
environmental correlation time (in units of a generation). Both
white Gaussian noise and white Poisson noise can be recovered
from the dichotomous noise by taking suitable limits (Ridolfi et al.,
2011), so the results obtained herein are quite generic.

For a fluctuating environment, we should define again the per-
sistence time. If, at t = 0, species #1 is represented by n individuals
and the system is in the+γ state, the persistence time is T+

n , while
if at t = 0 the system is in the −γ state we denote the persistence
time by T−

n . The BKE (with q ≡ 1/2 − γ /4) reads,

T+

n =
1
N

+

(
1 −

1
τ

){
Fn
[
qT+

n+1 + (1 − q)T+

n−1

]
+ [1 − Fn]T+

n

}
+

1
τ

{
Fn
[
qT−

n−1 + (1 − q)T−

n+1

]
+ [1 − Fn]T−

n

}
(11)

T−

n =
1
N

+

(
1 −

1
τ

){
Fn
[
qT−

n−1 + (1 − q)T−

n+1

]
+ [1 − Fn]T−

n

}
+

1
τ

{
Fn
[
qT+

n+1 + (1 − q)T+

n−1

]
+ [1 − Fn]T+

n

}
.

Defining Sn ≡ (T+
n + T−

n )/2, ∆n ≡ (T+
n − T−

n )/2, moving to the
continuum limit x ≡ n/N and expanding T (x ± 1/N) to the order
in a Taylor series as above, one finds:

2
τ

∆ =

(
1 −

2
τ

)
x(1 − x)

[
−γ

N
S ′

+
∆′′

N2

]
(12)

− 1 = x(1 − x)
(
S ′′

N
− γ∆′

)
where the derivatives are with respect to x.

If τ = 2 (i.e., δ = 2/N), the chance of the environment to switch
from ±γ to ∓γ after each elementary step is 1/2. In this limit the
environmental stochasticity becomes demographic: the outcome
of each duel is determined by two independent drawings of a
random variable, one that dictates the environmental conditions
and the other determines the result given these conditions, so the
net chance to win a duel is again 1/2 with no correlations in time.
This can be seen from Eqs. (12): the r.h.s. of the upper equation is
zero, meaning that ∆ = 0, and the lower equation reduces to (5).

In most of the realistic scenarios one would like to ensure that
the persistence time of the environment is independent of the size
of the community, i.e., to assume that δ is fixed, and so, in the large
N limit, 2/τ is negligible. In this case, (12) takes the form,

− γ S ′
+

∆′′

N
=

2∆
δx(1 − x)

(13)

S ′′

N
− γ∆′

= −
1

x(1 − x)
.

Using a (numerically inspired) dominant balance argument, we
discovered that for reasonably large N the ∆′′/N term is negligible
in the first equation (see further discussion of this point in the
last paragraph of this section). Solving the first equation for ∆ and
plugging it into the second, we obtain an inhomogeneous, first
order ODE for S ′. From symmetry, S(x) peaks at x = 1/2, meaning
that S ′(1/2) = 0; using that as a boundary condition one obtains:

S ′
= −

N ln
( x
1−x

)
1 + Nδγ 2x(1 − x)/2

(14)

∆ =
Nδγ x(1 − x) ln

( x
1−x

)
/2

1 + Nδγ 2x(1 − x)/2
.

S is the average persistence time, when one averages over
both initial conditions (i.e., starting at a certain x, when half of
the realizations the environment favors species 1 at t = 0) and
fluctuation histories. To calculate S we integrate S ′, invoking the
boundary condition S(0) = 0 (which by symmetry implies S(1) =

0 as well), so that

S(x) = −N
∫ x

0
dt

ln
( t
1−t

)
1 + Gt(1 − t)

, (15)

where

G ≡ Nδγ 2/2

is the ratio between the strength of environmental stochasticity,
γ 2δ/2, and the strength of the demographic noise 1/N . This pa-
rameter controls the transition between the demographic noise
dominated regime and the environmental stochasticity dominated
regime, as we shall demonstrate immediately. The general form of
Eq. (15) is S(x) = NF(G, x), so S(1/2) = NF(G), in agreement with
the prediction of Hidalgo et al. (2017) of a one parameter scaling
function.

Eq. (15) is a closed form expression for S(x), and one may easily
evaluate this integral numerically. Moreover, an explicit solution
may bewritten in a formof the dilogarithm functions (Abramowitz
and Stegun, 1964) Li2(x) ≡ −

∫ x
1 dt ln(t)/(t − 1):

S(x) = −
N

√
G(4 + G)

[
2 atanh

(√
G(4 + G)(1 − x)
2 + G(1 − x)

)
ln(1 − x)

+ 2 atanh
(√

G(4 + G)x
2 + Gx

)
ln x

− Li2

(
1 −

2(1 − x)
G +

√
G(4 + G)

)
+ Li2

(
1 +

(
G +

√
G(G + 4)

)
(1 − x)/2

)
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− Li2

(
1 −

2x
G +

√
G(4 + G)

)
+ Li2

(
1 +

(
G +

√
G(G + 4)

)
x/2

)
− Li2

(
1 +

(
G +

√
G(G + 4)

)
/2
)

+ Li2

(
1 +

G −
√
G(G + 4)
2

)]
. (16)

To understand intuitively this result, it is better to consider the
asymptotic behavior of the maximum persistence time, S(1/2), as
obtained from the integral (15), in the limits of small and largeG. As
long asG ≪ 1, one can neglect the second term in the denominator
to get

S(1/2) = −

∫ 1/2

0
N ln

(
x

1 − x

)
dx = N ln(2), (17)

i.e., the pure demographic result (7). If G ≫ 1 one may define
1/G ≪ ζ ≪ 1 and use asymptotic matching (Bender and Orszag,
1999) to obtain the leading behavior:

S(1/2) ≈ −N
∫ ζ

0

ln(x)
1 + Gx

dx −
N
G

∫ 1/2

ζ

ln
( x
1−x

)
x(1 − x)

dx

≈ N
[
ln2(G) + π2/3

2G
+ O

(
ln2(G)
G2

)]
. (18)

Fig. 2 demonstrates the validity of our results. The agreement
between S(x) as obtained from Eq. (16) and the numerical simula-
tions is quite good, and the dependence of S(1/2)/N on G is shown
to satisfy (16).

As Hidalgo and coworkers (Hidalgo et al., 2017) suggested, the
large N asymptotic behavior of the persistence time scales, for this
scenario, like

S(1/2) ∼ ln2N, (19)

and the general behavior is described by a function of the form
S(1/2) = NF(G), where F(G) approaches unity when the envi-
ronmental stochasticity vanishes (G → 0) and ln2(G)/G when
G is large. Our expression (16) provides the explicit form of the
required scaling function, with the correct asymptotic behaviors
(Eqs. (17) and (18)).

The asymptotic matching analysis and Eq. (18) allows us to
identify the large N scaling regime, where the ln2(G) term is much
bigger than the first correction. This happens when,

N ≫
2eπ/

√
3

δγ 2 ≈
12.25
δγ 2 . (20)

Now let us consider the limitations of the general scaling anal-
ysis. As seen in Fig. 2, when G approaches zero with N fixed
(meaning that the environmental stochasticity parameter δγ 2 is
decreasing) the system approaches smoothly the demographic
noise limit S(1/2)/N = ln(2). However, when the noise is kept
fixed and N decreases (filled red circles) there are deviations, since
the demographic noise limit admits small N corrections (10), and
the scaling hypothesis breaks down. Thus, themaximumdeviation
is −1/2N = −γ 2δ/4Gwhich, for fixed G, grows with δ.

Another limitation of the general scaling comes from the large
δ limit. As seen in Appendix B, the persistence time under a time-
independent selective force (i.e., when η stays fixed at η0) scales as
ln(N)/η0. This implies that, if δ ≫ ln(N)/|γ |, absorption may take
place before the environment has a significant chance to change.
Indeed our numerics shows that, in this regime, the predictions
of this section are violated and one should stick to the ln(N)/|γ |

estimation.

A surprising outcome of (16) is the persistence time of the
system with a single initial mutant, S(1/N). Evaluating (16) for
x = 1/N and approximating it for large N , we get

S(1/N) =
ln(1 + γ 2δ/2)

γ 2δ/2
ln(N). (21)

This result implies that in the large N limit, as long as the noise
strength γ 2δ/2 is small, the clonal interference threshold is the
same for this model and for a model with pure demographic
stochasticity. One may understand this result intuitively by look-
ing at the process as a random walk in the log-abundance space
(Kessler et al., 2015). The first passage probability at t scales like
t−3/2 with a cutoff at ln2(N), so the average lifetime, starting at one,
is ln(N).

Finally, we would like to discuss the dominant balance argu-
ment that allows us to neglect the ∆′′/N term in the first equation
of (13). Taking the solution for ∆ from Eq. (14) one may calculate
∆′′/N and compare it with γ S ′. It turns out that for x of order
one, ∆′′/(Nγ S ′) approaches zero as G → ∞. Even in the limit
x → 1/N , ∆′′/(Nγ S ′) → γ 2δ2/2 (the same is true in the other
limit x = 1 − 1/N). Accordingly, as long as γ 2δ2 ≪ 1, the ∆′′/N
term is negligible with respect to the other two terms for all the
relevant values of x.

5. Environmental stochasticity with storage effect

As discovered by Chesson and collaborators (Chesson and
Warner, 1981; Hatfield and Chesson, 1989, 1997), the introduction
of environmental stochasticity into the system may induce an at-
tractive force that stabilizes the system. Even if the environmental
fluctuations are ‘‘neutral’’ (i.e., the fitness of both species, when
averaged over time, is the same), they may support the invasion
(and recovery) of low abundance species. Accordingly, one expects
that the persistence time of the system is large compared to the
O(N) dependence of the pure demographic noise case. In this
section we consider this scenario for a two-species community
with dichotomous noise.

The conditions under which this ‘‘storage effect’’ takes place,
and its dependence on the parameters of the system, were con-
sidered by us in Danino et al. (2016). Here we would like to find
the persistence time obtained from this dynamics. We have cho-
sen an individual based version of the dynamics of the Chesson–
Warner ‘‘lottery game’’ (Chesson andWarner, 1981). These authors
have analyzed the problem without demographic stochasticity, so
extinction and fixation were not allowed, while here the game is
analyzed with demographic stochasticity.

For the sake of concreteness, let us consider a forest with N
trees that belong to two different species. Every tree produces the
same number of seeds, such that the density of seedlings (of a
given species) per unit area reflects the relative abundance of the
species’ trees in the forest. During each elementary step, one tree
is chosen at random to die, and the seedlings compete to fill the
vacant site. The environmental conditions determine the fitness of
these seedlings: if there are n trees of species 1 and N − n trees of
species 2, the chance of species 1 to capture an empty slot, P1, is
proportional to the number of seedlings weighted by their fitness.
Here we take,

P1 =
n

n + ρ(N − n)
=

x
x + ρ(1 − x)

, (22)

where ρ measures the relative fitness of species 2: if ρ = 1 the
chance of a species to fill the gap is proportional to its relative
abundance in the forest, and the game reduces to two species
dynamics with pure demographic stochasticity. When ρ > 1
species 2 is preferred as its per seedling chance to take over the gap
is larger, while if ρ < 1 this chance is smaller. Clearly, the chance
of species 2 to capture the slot is 1 − P1.
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Fig. 2. A comparison between the results of a Monte-Carlo simulations, numerical solution of the BKE and the analytic results (16) for S(x) is presented in the left panel.
Results are depicted for a systemwithN = 1000, γ = 0.2 and δ = 0.1, where theMC lifetimes were averaged over 10000 runs. In the right panel we compare themaximum
lifetime of the system, S(1/2), with the predictions of Eq. (16), testing both the accuracy of this formula and the general scaling hypothesis suggested in Hidalgo et al. (2017).
Four sets of results, obtained using a numerical solution of the master equation, are presented. Green squares are the results for N = 2000, γ = 0.1 and δ from 2.5 · 10−3 to
0.1. Blue circles are for N = 2000, δ = 0.1 and γ from 0.01 to 0.1. Red (open and filled) circles represent results with varying N with δ = 0.1: for the open, γ = 0.2 and N
runs from 70 to 3000, while for the filled circles γ = 0.1 and N is between 50 and 2000. Clearly, the analytic prediction and the results are in perfect agreement as long as
N is sufficiently large. For small N (filled red) one may identify small deviations from the theoretical prediction and a violation of the scaling hypothesis. The magnitude of
these discreteness induced corrections for N = 50 is about 0.01, in agreement with the O(1/2N) scaling predicted in Eq. (10). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Again we are interested in the case where ln(ρ), the log-fitness,
takes the values ±γ , where γ measures the strength of the envi-
ronmental fluctuations. As in the last section, the chance to switch
between plus and minus γ is 1/τ per elementary step, so δ ≡

τ/N is the environment correlation time as measured in units of
a generation time.

Defining P+

1 and P−

1 as the values of P1 in the ±γ states, cor-
respondingly, one realizes that the chance of species 1 to increase
its abundance during an elementary step is (1 − x)P+

1 when the
environment favors it and (1 − x)P−

1 when the fitness of species 2
is higher. The backward Kolmogorov equation then reads,

T+(x) =
1
N

+

(
1 −

1
τ

){[
(1 − x)P+

1 T+(x + 1/N)

+ x(1 − P+

1 )T+(x − 1/N)
]
+ [1 − (1 − x)P+

1

− x(1 − P+

1 )]T+(x)
}

+
1
τ

{[
(1 − x)P−

1 T−(x + 1/N) + x(1 − P−

1 )

× T−(x − 1/N)
]

+ [1 − (1 − x)P−

1 − x(1 − P−

1 )]T−(x)
}

(23)

T−(x) =
1
N

+

(
1 −

1
τ

){[
(1 − x)P−

1 T−(x + 1/N)

+ x(1 − P−

1 )T−(x − 1/N)
]
+ [1 − (1 − x)P−

1

− x(1 − P−

1 )]T−(x)
}

+
1
τ

{[
(1 − x)P+

1 T+(x + 1/N)

+ x(1 − P+

1 )T+(x − 1/N)
]

+ [1 − (1 − x)P+

1 − x(1 − P+

1 )]T+(x)
}
.

Defining S(x) = (T+(x) + T−(x))/2, ∆(x) = (T+(x) − T−(x))/2,
expanding T (x± 1/N) in a Taylor series as above and expanding to
second order in γ one finds:

2
δx(1 − x)

∆ =

(
1 −

2
Nδ

){
γ

(
1
2

− x
)

S ′′

N
+ γ S ′

+

[
1 + γ 2

(
1
2

− x
)2
]

∆′′

N

+ γ 2
(
1
2

− x
)

∆′

}
(24)

−
1

x(1 − x)
= γ

(
1
2

− x
)

∆′′

N
+ γ∆′

+

[
1 + γ 2

(
1
2

− x
)2
]

S ′′

N

+ γ 2
(
1
2

− x
)
S ′.

Eqs. (24)may be discussed in two different limits. The first is the
case where τ is O(1), i.e., when δ ∼ 1/N . Unlike the case without
storage considered in Section 4, where under fast switching of the
environment the stochasticity becomes essentially demographic,
here in this limit the storage effect is very strong and the lifetime of
the system, as we shall see, is exponential in N when N → ∞. The
other, more relevant, case is when δ is fixed as N grows (meaning
that the persistence time of the environmental fluctuations is
independent of the size of the community); in this limit the storage
effect is weaker, and the persistence time scales like a positive
power of N in the asymptotic limit.

5.1. Strong storage effect

To consider a strong effect case, let us assume τ = 2. This im-
plies that after an elementary timestep the environment switches
with probability 1/2, so there is effectively no persistence of the
environmental conditions. In this scenario δ = 2/N , meaning
that the r.h.s. of the first equation in (24) vanishes, so ∆ = 0 (∆
measures the difference between T+(x) and T−(x), and there is no
such difference if the environmental conditions are uncorrelated).
Eqs. (24) then reduce to

S ′′
+ Nγ 2

(
1
2

− x
)
S ′

= −
N

x(1 − x)
, (25)

where the γ 2 term in the coefficient of S ′′ was neglected with
respect to unity, since we assumed that γ is small. Eq. (25) is
an inhomogeneous, first order equation for W ≡ S ′; using an
integrating factor to solve it, plugging in the boundary condition
W (1/2) = 0 (meaning that the maximum lifetime of the system
occurs at x = 1/2 since the two species are symmetric) and
integrating again, one finds,

S(x) = −N
∫ x

0
dt e−Nγ 2t(1−t)/2

∫ 1/2

t
dq

eNγ 2q(1−q)/2

q(1 − q)
, (26)
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Fig. 3. Maximum persistence time, S(1/2), as a function of g ≡ Nγ 2/2, for
different values of N (N = 2n

· 10 for n = 1..9) and γ = 0.3. Blue circles are
the result obtained from a numerical solution of the BKE, red line is the large g
asymptotic expression (27) and dashed green line shows theN log(2), demographic
stochasticity, relationship. The inset shows the same data on a double logarithmic
scale, emphasizing the breakdown of (27) and the demographic noise behavior at
small values of g .

where the boundary condition S(0) = 0 determines the lower
bound of the outer integral.

As long as the quantity g ≡ Nγ 2/2 is large, the main contri-
bution to the inner integral comes from the peak close to 1/2 (the
1/q divergence when q approaches zero is regularized by the outer
integral). The Laplace method then yields for the inner integral in
the large g limit,∫ 1/2

t
dq

eNγ 2q(1−q)/2

q(1 − q)
∼ 2eg/4

√
π

g − 4
.

The outer integration in the large g limit is trivial, since only
the low t region contributes and one may replace t(1− t) by t and
extend the limits of integration to infinity. Accordingly,

S(1/2) ∼
1
γ 2

√
8π

Nγ 2 − 8
eNγ 2/8. (27)

As suggested by the denominator of the square root, this expres-
sion is valid only for g ≫ 4. In the small g regime the logarithmic
divergence close to zero dominates the inner integral and the prob-
lem converges to its demographic noise limit, as demonstrated in
Fig. 3.

5.2. Weak storage effect

Now let us consider the case where δ is fixed while N → ∞, so
that the 2/(Nδ) in the upper line of Eq. (24) is negligible, meaning
that we are dealing with the more realistic situation where δ,
the correlation time of the environment, is fixed in units of a
generation and is independent of the community size.

As in the case without the storage effect, it turns out that only
the S ′ and the∆ termare important in the first equation of (24), and
the ∆′′ is negligible in both equations. This numerical observation
may be justified, as before, as long as γ 2δ and γ 2δ2 are much
smaller than one. Accordingly, Eqs. (24) reduce to,

2
δx(1 − x)

∆ = γ S ′ (28)

−
1

x(1 − x)
= γ∆′

+
S ′′

N
+ γ 2

(
1
2

− x
)
S ′,

where we also omitted the γ 2 term in the coefficient of S ′′, since it
is small compared to one.

The upper line of (28) implies γ∆′(x) = γ 2δ
[
x(1 − x)S ′′/2+

(1/2 − x)S ′
]
. Plugging that into the second equation one finds,

γ 2N(1 + δ)
(
1
2

− x
)
S ′

+

(
1 +

Nγ 2δx(1 − x)
2

)
S ′′

= −
N

x(1 − x)
, (29)

or, withW ≡ S ′ and F1(x) ≡ 1 + Nγ 2δx(1 − x)/2,

W ′(x)F1(x) + W (x)F ′

1(x)
1 + δ

δ
= −

N
x(1 − x)

. (30)

Multiplying both sides of (30) by the integrating factor F 1/δ
1 one

may write (30) as

d
dx

(
W (x)F 1+1/δ

1 (x)
)

= −N
F 1/δ
1 (x)

x(1 − x)
. (31)

One integration over x yields W , where (by symmetry) the limits
of integration are such thatW (1/2) = 0. Accordingly,

S(x) = N
∫ x

0
dtF−1−1/δ

1 (t)
∫ 1/2

t
dq

F 1/δ
1 (q)

q(1 − q)
(32)

= N
∫ x

0
dt(1 + Gt(1 − t))−1−1/δ

∫ 1/2

t
dq

(1 + Gq(1 − q))1/δ

q(1 − q)
,

with G ≡ Nγ 2δ/2. Fig. 4 shows the agreement between (32) and
the numerics.

Let us try to extract the large N asymptotic behavior of the
maximum persistence time S(1/2). In the inner integral of (32) the
integrand grows exponentially with q [for small q the numerator
grows like exp(Gq/δ)] so the main contribution comes from the
regime q > δ/G. As before, although the denominator contribution
diverges logarithmically when the lower limit of the integral ap-
proaches zero (reflecting the effect of demographic stochasticity),
this divergence is G-independent and is regularized by the outer
integral. This observation allows us to factor the numerator of the
inner integral,∫ 1/2

t
dq

(1 + Gq(1 − q))1/δ

q(1 − q)

= G1/δ
∫ 1/2

t
dq[q(1 − q)]−1+1/δ

(
1 +

1
Gq(1 − q)

)1/δ

∼ G1/δ
(
1 +

4
G

)1/δ ∫ 1/2

t
dq[q(1 − q)]−1+1/δ (33)

where in the last step we replaced the 1/q(1 − q) term in the last
factor by its value at q = 1/2, the region from which the main
contribution comes (the same result may be obtained by Laplace
integration around the maximum point at q = 1/2). Accordingly,

S(x) = NG1/δ
(
1 +

4
G

)1/δ ∫ x

0
dt

1
[1 + Gt(1 − t)]1+1/δ

×

[
B 1

2
(
1
δ
,
1
δ
) − Bt (

1
δ
,
1
δ
)
]

. (34)

Here Bz(a, b) is the incomplete Beta function.
The main contribution to the outer integral (34) is from the

t → 0 regime, so 1 − t ≈ 1. In this limit Bt ( 1δ ,
1
δ
) ≈ t1/δ .

Accordingly, the maximum persistence time as N → ∞ is,

S(1/2) ∼ NB 1
2
(
1
δ
,
1
δ
)
(
1 +

4
G

)1/δ

δG1/δ−1

=
2
γ 2 B 1

2
(
1
δ
,
1
δ
)
(
1 +

8
γ 2δN

)1/δ(
γ 2δ

2
N
)1/δ

. (35)
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Fig. 4. In the left panel, a comparison between the results of a Monte-Carlo simulations, numerical solution of the BKE and the analytic results (i.e., numerical evaluation
of (32)) for S(x), is presented. Results are shown for N = 200, γ = 0.4 and δ = 0.2. The MC lifetimes were averaged over 250000 runs. In the right panel we compare
the maximum lifetime of the system, S(1/2), with the predictions of Eq. (32), testing, again, both the accuracy of this formula and the general scaling hypothesis. Three
full black lines, corresponding to the outcomes of (32) for different values of δ (appearing next to each line), are presented along with the results obtained using numerical
solutions of the BKE. For the two sets δ = 0.05 and δ = 0.1, the green squares are the numerical results with N = 1000 and γ varies between 0.01 and 0.2, and the red
circles represent the results for γ = 0.2 and N ∈ [50..1000]. For δ = 0.2, green squares correspond to N = 400 and γ ∈ [0.01..0.4] while the red circles are γ = 0.4 and
N ∈ [50..400]. All lines converge to ln(2), the demographic noise limit, as G goes to zero. Open diamonds are the lifetimes obtained from Monte-Carlo simulation of the
process for δ = 0.2 γ = 0.4 N ∈ [50, 100, 200, 400], where each realization was averaged over at least 100000 runs.

This expression is a very good approximation to the exact expres-
sion (32) as long as G is large. The term (1 + 4/G)1/δ behaves in
the large G limit like exp(4/δG) and converges to one, yielding the
asymptotic power-law behavior

S(1/2) ∼ N1/δ (36)

predicted by Hidalgo et al. (2017). One sees, however, that this
asymptotic behavior emerges only when Gδ = Nγ 2δ2/2 ≫ 4. The
approximation suggested in Eq. (35) captures a much wider range,
as demonstrated in Fig. 5.

When a single mutant is introduced into the system, the persis-
tence time is obtained from the integral (34) with an upper limit at
x = 1/N . The result is

S(1/N) =
γ 2

2
S(1/2)

= B 1
2
(
1
δ
,
1
δ
)
(
1 +

8
γ 2δN

)1/δ(
γ 2δ

2
N
)1/δ

. (37)

Unlike the case with no storage, now the persistence time of a sin-
gle mutant has the same N1/δ scaling as the maximum persistence
time. Accordingly, the threshold to clonal interference occurs at
much smaller values of ν, of order N−(1+1/δ).

6. Storage effect against selection

For a system exposed to external migration, or allowing for
a constant rate of mutations or speciation events, a strictly neu-
tral/symmetric model, where the species fitnesses are assumed to
be exactly equal (either literally or after averaging over time) is
quite implausible. One should expect that phenotypic differences
lead to some value of average selective advantage of one of the
species. Even mechanisms like emergent neutrality (Kessler and
Shnerb, 2014; Vergnon et al., 2012) yield competitive communities
with slight selective variations between species.

When there is no storage in the system, selection determines
the large N limit of the persistence time, and the effect of en-
vironmental stochasticity becomes irrelevant. Without storage,
stochasticity yields only a randomwalk in the log-abundance space
(see Section 2D) and the constant directional bias wins against
such a random movement in the long run. In Appendix C we

Fig. 5. Persistence time for a system with weak storage effect (δ = 0.2, γ = 0.5)
is shown against N ∈ [50, . . . , 4000] on a double logarithmic scale. Blue circles
are numerical results obtained from the BKE, Red full line was obtained from
numerical integration of (32) and the green dashed line is the approximation (35).
As predicted, the slope approaches 1/δ = 5 in the asymptotic limit, but to reach
this limit 4/Gδ should be smaller than one. This condition is fulfilled here around
N = 800. The approximation (35) holds for a much wider regime.

present an analysis of this case: the model considered in Section 4
is superimposed on fixed selective bias and the large N result is
indeed identical to the result of amodelwith selection andwithout
environmental stochasticity, analyzed in Appendix B.

A much more interesting question emerges when the storage
effect, which gives stability to the system, interferes with a fixed
selective advantage of one species. This question has been con-
sidered by Chesson and Warner (Chesson and Warner, 1981) (see
also Hatfield and Chesson, 1989) who concluded that population
fluctuations converge on a stationary stochastic process with all
densities positive if γ 2 > 2η0, i.e., if the stochasticity is strong
enough with respect to the strength of selection. Here we consider
the same problem from the persistence time perspective. We will
show that the maximum time to absorption is superlinear in N
when the stability parameter presented in Chesson and Warner
(1981), 2η0/γ

2, is smaller than 1 − δ.
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To model this scenario we change the dynamics of ln(ρ) in
Eq. (22): instead of jumping from +γ to −γ , ln(ρ) jumps between
η0 + γ and η0 − γ , meaning that species 2 has a fixed selective
advantage η0, superimposed on the environmental fluctuations of
amplitude γ .

Plugging this definition of η and P1 into Eq. (23), one finds, to
the leading order in η0,

2
δx(1 − x)

∆ =

(
1 −

2
Nδ

){
γ

(
1
2

− x
)

S ′′

N
+ γ S ′

+

[
1 + γ 2

(
1
2

− x
)2
]

∆′′

N

+ γ 2
(
1
2

− x
)

∆′

}
(38)

−
1

x(1 − x)
= γ

(
1
2

− x
)

∆′′

N
+ γ∆′

+

[
1 + γ 2

(
1
2

− x
)2
]

×
S ′′

N
+

[
γ 2
(
1
2

− x
)

− η0

]
S ′.

Note that η0 appears only in the last term of the lower equation.
As before, dominant balance analysis allows us to simplify these
equations,

2
δx(1 − x)

∆ = γ S ′ (39)

−
1

x(1 − x)
= γ∆′

+
S ′′

N
+

[
γ 2
(
1
2

− x
)

− η0

]
S ′.

With the definitionsW ≡ S ′, F1(x) ≡ 1 + Gx(1 − x), G ≡ Nγ 2δ/2,

W ′(x)F1(x) + W (x)
(

−η0N + F ′

1(x)
1 + δ

δ

)
= −

N
x(1 − x)

. (40)

This is a first order equation forW thatmay be solvedwith an inte-
gration factor; however, since the problem is no longer symmetric
the point at whichW vanishes is not at x = 1/2. Labeling this point
x∗, the result for S, taking into account the boundary condition
S(0) = 0, is,

S(x) = N
∫ x

0
dt

e−z(t)

(1 + Gt(1 − t))1+1/δ

×

∫ x∗

t
dq

ez(q)(1 + Gq(1 − q))1/δ

q(1 − q)
, (41)

with

z(x) ≡ −µ atanh

(
(2x − 1)

√
G

G + 4

)
, (42)

where

µ =
2η0N

√
G(G + 4)

≈
4η0

γ 2δ
, (43)

the last approximation holding for large G.
To proceed, we first need to determine x∗, using the second

boundary condition, S(1) = 0. Solving numerically for x∗, S(x) may
be plotted against the numerical solutions of the BKE and the fit is
very nice (Fig. 6).

To obtain the large N behavior of S(x∗) from (41), we assume, as
in the former section, that the main contribution of the inner in-
tegral comes from finite values of q (again, although the integrand
blows up like 1/q at zero, this contribution is only logarithmic and
is regularized by the outer integration). Expressing the hyperbolic
tangent in terms of logarithms, the inner integral may be written

Fig. 6. Persistence time for a system with storage effect (δ = 0.1, γ = 0.2, N =

1000) and selectionη0 = 5·10−3 . The result obtained fromnumerical solution of the
master equation (filled red circles) and those obtained from a numerical integration
of (41) with G = 2 (dashed green line) are shown. The value x∗

= 0.723 was
obtained numerically from the condition S(1) = 0. As explained in the text, positive
η0 gives an average selective advantage to species 2, hence the lifetimeof the system
peaked to the right of x = 1/2.

as,∫ x∗

t
dq

ez(q)(1 + Gq(1 − q))1/δ

q(1 − q)
= (44)

G1/δ
∫ x∗

t
dq

[q(1 − q)]1/δ

q(1 − q)

(
q

1 − q

)−µ/2(
1 +

1
Gq(1 − q)

)1/δ

×

⎛⎜⎝
(
1 + (2q − 1)

√
G

G+4

)
(1 − q)(

1 − (2q − 1)
√

G
G+4

)
q

⎞⎟⎠
−µ/2

.

Notice that the last two terms under the integral approach unity in
the large G limit. Accordingly, we use for the Laplace integration of
(44) only the terms that are important when G is large,∫ x∗

0
dq qα(1 − q)β . (45)

The maximum of the integrand in (45) occurs at q = α/(α + β),
where α = −1+1/δ−µ/2 and β = −1+1/δ+µ/2 (we assumed
α > 0, see below). Note that, for positive values ofµ, themaximum
of S, x∗, moves to the right of 1/2 (see Fig. 6) while the maximum
of the integrand occurs at q < 1/2. This implies that (unless µ is
very small, see below) the peak is within the range of integration.

Plugging q = q in the last two terms and using Laplace integra-
tion one obtains for the inner integral,

(
1 +

1
Gq(1 − q)

)1/δ

⎛⎜⎝
(
1 + (2q − 1)

√
G

G+4

)
(1 − q)(

1 − (2q − 1)
√

G
G+4

)
q

⎞⎟⎠
−µ/2

×

√
2παβ

(α + β)3
qα(1 − q)βG1/δ. (46)

To dealwith the outer integral, one notices that the contribution
of the outer integral comesmainly from the t ≪ 1/G region. In that
case, z(t) should be expanded for small t and large G, such that Gt
is fixed, yielding

z(t) ≈ −
µ

2
ln(x + 1/G). (47)
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Since the inner integral is now a constant, the contribution of the
outer integral will be∫ x∗

0
dt

e−z(t)

(1 + Gt(1 − t))1+1/δ ≈ G−
µ
2

∫
∞

0

dt
(1 + Gt)−1+µ/2−1/δ

≈
G−

µ
2

G(1 + 1/δ − µ/2)
. (48)

The final form of the large N approximation is (the absolute
value signs will soon be justified), is,

S(x∗) ∼

(
1 +

1
Gq(1 − q)

)1/δ

×

⎛⎜⎝
(
1 + (2q − 1)

√
G

G+4

)
(1 − q)(

1 − (2q − 1)
√

G
G+4

)
q

⎞⎟⎠
−µ/2

×

√
2παβ

(α + β)3
2qα(1 − q)β

γ 2δ(1 + 1/δ − |µ|/2)
G

1−|s̃|
δ . (49)

Here we define the dimensionless selection parameter mentioned
above,

s̃ ≡
2η0

γ 2 ,

this parameter measuring the strength of the selection in units of
the environmental stochasticity.

The terms in the first two parentheses of (49) approach unity
at large G, but are important when G is small. When all other
parameters are kept fixed and N increases the lifetime of the
community grows like,

S(x∗) ∼ N
1−|s̃|

δ . (50)

All these features are demonstrated in Fig. 7. Comparing (50) with
(35), one notices that the main effect of selection in the large N
limit is to decrease the exponent of N , from 1/δ to (1 − |s̃|)/δ.
Our approximation, as we noted right after Eq. (45), is based on
the assumption α > 0, which is translated to the condition that
the growth of S(x∗) with N is superlinear. We did not calculate the
lifetime of the system in the s̃ > 1 − δ regime, but clearly when
s̃ → ∞ the N scaling has to be logarithmic (see Appendix B).

Until now we have assumed that the values of η0, µ and s̃ are
all positive, but in Eqs. (49) and (50) we take the absolute values of
these quantities in the last terms. The reason for that is as follows.
When η0 is negative x∗ occurs to the left of 1/2, while q > 1/2.
The inner integration may be done using Laplace integrals only if
the peak is inside the integration region, i.e., it should include the
region between x∗ and x = 1,meaning that the outer integral has to
be done over the range between x and 1. The main contribution to
the outer integral in this range comes from values of t around one,
so the sign of µ in the expression for z(t) is inverted. Accordingly,
the quantities that depend on µ from the outer integral appear
with an absolute value sign. The µ in the second parentheses of
(49) comes from the inner integration and do not change sign, but
since q(η0) = 1 − q(−η0), the result is the same.

The discussion that leads to Eq. (49) was based on the assump-
tion that the inner integration region containsmost of theGaussian
peak around q. This is not exactly true when 1/µ and δ are not
small, as both q and x∗ approach 1/2, and in the extreme limit
µ = 0 only half of the peak is integrated, meaning that (49) should
be multiplied by 1/2. In general one needs to multiply (49) by
(1 + Erfc [(x∗

− q)/σ ])/2, where σ =
√

αβ/(α + β)3.

Fig. 7. Log of the maximum persistence time, S(x∗), is plotted versus ln(N) for
a system with storage effect (δ = 0.1, γ = 0.2) and selection. Orange circles
correspond to η0 = s̃ = 0, green diamonds represent η0 = 0.005, s̃ = 1/4, purple
hexagrams are for η0 = 0.01, s̃ = 1/2 and the brown squares are η0 = 0.02, s̃ = 1.
The data obtained from numerical integration of Eq. (41) and the full lines are the
large N approximation (49) for each case.

7. Discussion

Coexistence of many competing species in a local community
and the maintenance of multiple alleles in a gene pool are ubiqui-
tous in natural systems. Standard explanations to these phenom-
ena, like strong niche differentiation (in ecology) or heterozygote
advantage (in population genetics), are subject to some theoretical
challenges, at least in the case of high-diversity assemblages. For
example, May (May, 1972) pointed out that if the niche overlap
between species is substantial the chance of a system of many
species to admit a stable equilibrium decreases exponentially
with the number of species. Therefore, the search for alternative
coexistence mechanisms became a subject of intensive research
(Chesson, 2000).

The (temporal) storage effect, suggested by Chesson and
coworkers, is apparently an appealing candidate. Environmental
stochasticity is almost always quite strong in biosystems (see,
e.g. Hekstra and Leibler (2012), where fluctuations scale with
abundance, and not with the square root of the abundance, even
under extremely stable external conditions. See also Kalyuzhny
et al., 2014b; Kalyuzhny et al., 2014a; Chisholm et al., 2014 for
an analysis of ‘‘standard’’ high diversity ecosystems, showing that
the main driver is environmental stochasticity). Accordingly, the
fact that it may become a stabilizing factor, supporting the growth
of rare species and providing an effective frequency dependent
selective mechanism, is very interesting.

From a different perspective, the ubiquitous presence of en-
vironmental stochasticity leads to attempts to incorporate it into
the neutral model—one of the main theoretical frameworks in
both population genetics and community ecology (Chisholm et al.,
2014; Kalyuzhny et al., 2014b, 2015; Danino et al., 2016). Biodi-
versity under neutral dynamics relays on speciation–absorption
equilibrium, and aswehave seenhere, environmental stochasticity
affects strongly the absorption rates. The works published so far
have relied on a mix of numerical experiments and a few analytic
arguments. A general theoretical understanding of the time aver-
aged neutral model, comparable with classical results that were
obtained for the neutral model with demographic stochasticity
(like the Fisher log-series and zero-sum multinomials), is still
missing.

Hereinwe have extended the results of Hidalgo et al. (2017) and
discussed a fewmodels that incorporate environmental stochastic-
ity, selection and demographic noise, for a two species community.
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These results are of interest in and of themselves, as they provide a
new insight to the classical works of Chesson and Warner (1981),
Hatfield and Chesson (1989) and Hatfield and Chesson (1997),
shedding light on the question of a community’s persistence time.
Moreover, our results provide an answer to a fundamental ques-
tion: at what rate one should introduce new types to the system in
order to maintain it in a diverse state.

There are still many open questions, including the behavior
of higher moments of the persistence time for the model with
storage (without storage, or with pure demographic stochasticity,
the variance of the persistence time is equal to the time itself,
as one can understand from the Galton–Watson theory or from
the theory of first passage time, correspondingly). The problem of
the fixation time (which is assumed to determine the pace of the
evolutionary process) is also of interest.

However, we believe that the most important aspect of the
work presented here is as a first step towards an analytic theory
of neutral dynamics with environmental stochasticity. Generaliza-
tion of our work from the two species case to a many species com-
munity will allow one to find the species abundance distributions
and the species richness for the time averaged neutral theory of
biodiversity in stable mutation–extinction equilibrium, and even
to incorporate weak effects of selection into the otherwise sym-
metric model (as we did numerically in Danino et al. (2016)). We
intend to address these topics in subsequent publications.
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Appendix A. Methods

Throughout thisworkwe compare the analytic results, obtained
from the backward Kolmogorov equations (BKE), to the results
obtained from three types of numerics: agent-based Monte-Carlo
simulation of the birth–death process, numerical solutions of the
BKE itself and numerical integrations of expressions like (41).

A.1. Monte-Carlo simulations

The agent based simulations were performed as follows. We
start with a community of N individuals, in which xN belong to
species #1 and N(1 − x) belong to species #2.

To simulate neutral dynamics with pure demographic stochas-
ticity (Section 3), two individuals are chosen at random in each
elementary step, with probability 1/2 the first dies and is replaced
by an offspring of the second (meaning that after the replacement
both individuals belong to the species of the second) and with
probability 1/2 the second dies and is replaced by the offspring
of the first. After each elementary step the time is incremented by
1/N . The persistence time of the community is defined as themean
time elapsed until one of the species goes extinct, and wemeasure
it by running many histories with the same initial condition and
averaging over the outcomes.

For the system with fixed selection, or with environmental
stochasticity with no storage effect (Appendix B, Section 4), the
same procedure is used, where now if two individuals belonging
to different species are involved in a duel, the chance of each to
win is determined by its relative fitness. The relative fitness is time
independent in a fixed environment and fluctuates between the
values η0 ± γ in the case of environmental stochasticity.

The storage effect is considered in Section 5 and the interplay
between the storage effect and the presence of overall selective
advantage is considered in Section 6. In both cases the simulation

procedure is different: in each elementary step one individual is
chosen at random to die, and then the species that is recruited to
fill the gap is determined according to the abundance weighted by
the fitness, as set out in Eqs. (22).

A.2. Numerical solution of the backward Kolmogorov equation

The discrete BKEs considered through this paper, like Eqs. (11)
and (23), are second order, linear, inhomogeneous difference equa-
tions that have the general form,

−
1
N
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,

where Wn,m is the rate of transitions from the n to the m state.
Accordingly, the values of T±

n [and consequently the values of S(n)
and ∆(n)] may be determined by inverting this 2N − 2 × 2N − 2
matrix and multiplying the outcome by the constant vector −1/N .

Appendix B. Pure selection without environmental stochastic-
ity

In this appendix we calculate the persistence time of a mutant
species of fitness η0 with n individuals in a two species community
of size N under fixed selective pressure (no environmental fluctu-
ations) with demographic stochasticity.

The model is the same model considered in Section 4 for en-
vironmental stochasticity with no storage effect; each elementary
step two individuals are chosen at random for a duel. If they belong
to the same species nothing happens, if they belong to different
species then species #1 wins with probability q and species #2
wins with probability 1 − q. The loser dies and an offspring of the
winner takes its slot, so n → n ± 1. The environment is fixed,
meaning that q = 1/2 − η0. When η0 → 0, the result should
converge to (6), while if the effect of selection is strong one expects
the asymptotic log(N)/η0 dependency.

The BKE may be derived from (11) by taking τ → ∞,

Tn =
1
N

+ Fn [qTn+1 + (1 − q)Tn−1] + [1 − Fn]Tn. (B.1)

Moving to the continuum limit (as before F = 2x(1 − x) where
x = n/N), expanding T in a Taylor series and keeping derivatives
up to the second order one obtains,

T ′′
+ η0NT ′

= −
N

x(1 − x)
, (B.2)

The solution to this equation is immediate. Using an integrating
factor we get(
T ′ exp(η0Nx)

)′
= −N exp(η0Nx)/(x(1 − x)),

and this yields,

T (x) = N
∫ x

0
dte−η0Nt

∫ x∗

t
dq

exp(η0Nq)
q(1 − q)

, (B.3)
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where x∗ is determined by the condition T (1) = 0 (see Section 6).
If η0 = 0, x∗

= 1/2 and the integrals yield the demographic noise
result T (x) = −N[x log(x) + (1 − x) log(1 − x)], as expected.

The integrals (B.3) are doable even for finite η0, yielding a result
in terms of hyperbolic arctangents and exponential integrals. To
find x∗ using the condition T (1) = 0we used this analytic solution,
plugged in the limits at zero and one, expanded the result for large
η0N and solved for x∗ to find,

x∗
∼

ln ln(η0N)
η0N

. (B.4)

Since x∗ is small in the large N limit, the (1 − q) term in the
denominator of the inner integral may be neglected if one looks for
the maximum persistence time. The leading term for this quantity
is,

T (x∗) ∼
2 ln(η0N)

η0
. (B.5)

Appendix C. Selection andenvironmental stochasticitywithout
storage

Here we consider the effect of a time independent selective
advantage of species #1, when superimposed on environmental
stochasticity, without storage. Practically we are looking at the
model considered in Section 4,when the chance of species 1, say, to
win a duel jumps between 1/2+η0/4+γ /4 and 1/2+η0/4−γ /4,
so η0 is the time independent component of the fitness. Since we
have no storage the dynamics resembles that of a random walker
(in log abundance space) with fixed bias towards one of the edges,
so when N goes to infinity one expects that Smax ∼ ln(N)/η0, while
for small Ns and weak η0 the ln2(N) behavior found in Section 4
dominates.

The BKE (with q1 ≡ 1/2+γ /4+η0/4 (q1 is the chance to jump
to the right in the plus phase) and q2 ≡ 1/2 + γ /4 − η0/4) (q2 is
the chance to jump to the left in the minus phase) reads,
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n
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Defining Sn = (T+
n + T−

n )/2, ∆n = (T+
n − T−

n )/2, moving to the
continuum limit and expanding T (x±1/N) to second order in 1/N
above, one finds:

2∆
τx(1 − x)

=

(
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2
τ

)[
γ

N
S ′

+
∆′′

N2 + η0
∆′

N

]
(C.2)

−
1

x(1 − x)
=

S ′′

N
+ γ∆′

+ η0S ′.

For small δ this yields (see Section 4),

2∆
δx(1 − x)

= γ S ′
+

∆′′

N
+ η0∆

′ (C.3)

−
1

x(1 − x)
=

S ′′

N
+ γ∆′

+ η0S ′.

Neglecting the ∆′′ and the ∆′ terms in the upper equation, solving
for ∆ in terms of S ′, ∆ = γ δx(1 − x)S ′/2, and plugging the
expression for ∆′ into the lower equation, we obtained,

−
N

x(1 − x)
= [1 + Gx(1 − x)]S ′′

+ [η0N + G(1 − 2x)]S ′. (C.4)

Fig. 8. Maximum persistence time, S(x∗)/N , is plotted versus x for a systemwith no
storage effect (δ = 0.1, γ = 0.1, N = 1000) and selection (η0 = 0.01). Red circles
were obtained from numerical solution of the integrals (C.5), where the value of x∗

was found from the condition S(1) = 0. The full blue line was obtained from the
numerical solution of the BKE with the same parameters.

Solving this equation using an integrating factor, the expression for
S is,

S(x) = N
∫ x

0
dt

(
1−2t−

√
1+4/G

1−2t+
√
1+4/G

)−µ/2

1 + Gt(1 − t)

×

∫ x∗

t
dq

(
1−2q−

√
1+4/G

1−2q+
√
1+4/G

)µ/2

q(1 − q)
, (C.5)

where G = Nγ 2δ/2 is the same parameter used in Section 4, x∗ is
the value of xwhere S reaches its maximum and

µ ≡
2η0N

√
G(G + 4)

. (C.6)

When G → 0 Eq. (C.4) converges to (B.2) for a system with de-
mographic stochasticity and selection but without environmental
stochasticity, while if η0 → 0 we recover Eq. (13). µ reflects the
relative strength of selection in comparison with the environmen-
tal stochasticity; for large G,

µ → 4η0/(γ 2δ).

Fig. 8 shows the fit between the numerical solution of the
BKE and the results obtained from a numerical solution of the
integral (C.5).

To illustrate how selection dominates the behavior when N →

∞, one note that in this limit
√
(4 + G)/G ∼ 1+ 2/G, so (C.5) may

be written as,

S(x) = N
∫ x

0
dt

( 1−t
1+Gt

)µ/2

1 + Gt(1 − t)

∫ x∗

t
dq

(1 + Gq)µ/2

q(1 − q)1+µ/2 . (C.7)

Let us assume, for themoment, thatwhile x∗ approaches zerowhen
N is large, Gx∗

≫ 1 in this limit. In such a case the 1 + Gq may be
replaced by Gq in the numerator of the inner integral of (C.7), since
the main contribution is from the upper bound. The inner integral
is then solvable, and the contribution from the outer integral may
be evaluated by calculating it in three different regimes: for 0 <

t < ζ (ζ ≪ 1, Gζ ≫ 1), 1 − ϵ < t < 1 (again (ϵ ≪ 1, Gϵ ≫ 1)
and ζ < t < 1 − ϵ and using asymptotic matching. To satisfy
S(1) = 0 one finds that x∗ must fulfill,(

x∗

1 − x∗

)µ/2 1
µG

=
ln(G)
G1+µ/2 , (C.8)
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i.e. (assuming, again, x∗
≪ 1),

(x∗)µ/2
∼ µ

ln(G)
Gµ/2 .

Note that the assumption Gx∗
≫ 1 turns out to be self consistent.

Evaluating the outer integral of (C.7) from zero to x∗ yields the
community persistence time as N → ∞,

S(x∗) ∼
2 ln(η0N)

η0
(C.9)

as obtained in Appendix B for selection without demographic
stochasticity [Eq. (B.5)].
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