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A fundamental problem in the fields of population genetics, evolution, and community ecology, is the fate 

of a single mutant, or invader, introduced in a finite population of wild types. For a fixed-size community 

of N individuals, with Markovian, zero-sum dynamics driven by stochastic birth-death events, the mutant 

population eventually reaches either fixation or extinction. The classical analysis, provided by Kimura and 

his coworkers, is focused on the neutral case, [where the dynamics is only due to demographic stochas- 

ticity (drift)], and on time-independent selective forces (deleterious/beneficial mutation). However, both 

theoretical arguments and empirical analyses suggest that in many cases the selective forces fluctuate in 

time (temporal environmental stochasticity). Here we consider a generic model for a system with demo- 

graphic noise and fluctuating selection. Our system is characterized by the time-averaged (log)-fitness s 0 
and zero-mean fitness fluctuations. These fluctuations, in turn, are parameterized by their amplitude γ
and their correlation time δ. We provide asymptotic (large N ) formulas for the chance of fixation, the 

mean time to fixation and the mean time to absorption. Our expressions interpolate correctly between 

the constant selection limit γ → 0 and the time-averaged neutral case s 0 = 0 . 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Complex systems are usually affected by both deterministic

and stochastic forces, and a reliable assessment of their rela-

tive importance is, in many cases, a difficult task. The neutralist-

selectionist debate ( Nei, 2005 ) in the field of molecular biology

is a typical example: selectionists believe that deterministic se-

lection is the dominant mechanism that shapes the genetic poly-

morphism in a population, while neutralists stress the effect of

demographic stochasticity (drift). The neutral model (with some

modifications, like spatial structure) was imported to ecology by

Hubbell (2001) and Leigh (2007) , and the arguments about the

relative importance of deterministic (niche) vs. stochastic (neu-

tral) factors have filled many pages of the ecological literature ever

since ( McGill et al., 2006; Ricklefs and Renner, 2012; Rosindell

et al., 2011 ). 

In these debates, the effect of deterministic forces is usually

contrasted with demographic stochasticity , that is, those random as-

pects of dynamics that affect the reproductive success of individu-

als in an uncorrelated (between individuals and over time) manner.

On the other hand, the selective/niche forces are assumed to affect

an entire population (species, allele, phenotype, strain) and to be

independent of time. 
∗ Corresponding author. 

E-mail address: shnerbn@mail.biu.ac.il (N.M. Shnerb). 
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Recently, many authors have considered another possibility:

uctuating selective pressure, or temporal environmental stochas-

icity ( Ashcroft et al., 2014; Assaf et al., 2013; Cvijovi ́c et al., 2015;

idalgo et al., 2017; Kalyuzhny et al., 2015; Lande et al., 2003;

ienand et al., 2017 ). Time-varying environment may affect the

elective advantage of an entire population, adding to the model a

orce which is correlated among individuals of the same type but

hanges randomly through time. 

There are several good reasons to engage in models that allow

or temporal environmental stochasticity. A-priori, it is difficult to

magine a mutation or a trait which are purely beneficial. An in-

rease of body mass, for example, may have many beneficial as-

ects but it exposes the individual to an increased pressure when

he environment deteriorates (e.g., during a drought). These trade-

ffs are quite ubiquitous in nature ( Cvijovi ́c et al., 2015 ) so one

xpects environmental variations to change the relative fitness of

pecies and strains. Moreover, the per-generation variations in pop-

lation size due to environmental stochasticity are O (n ) (where

 is the size of the population), while demographic stochasticity

enerates O( 
√ 

n ) noise. Therefore, for a population of a reasonable

ize environmental stochasticity should be the dominant process

 Lande et al., 2003 ). 

Empirically, the fluctuations in population size that were mea-

ured in a wide variety of systems scale in many cases like

 , and in almost any case were found to be much larger than

https://doi.org/10.1016/j.jtbi.2018.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.01.004&domain=pdf
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n ( Chisholm et al., 2014; Kalyuzhny et al., 2014a; 2014b; Leigh,

007 ). Measurements of the selection coefficients for different

haracters (or variants) of a single species also indicate that se-

ective forces are time dependent, often changing their direction

 Bell, 2010 ). Consequently, the need to extend the theory in or-

er to incorporate environmental stochasticity (also known as tem-

oral niches, fluctuating selection, alternating selective pressure

nd so on) received a considerable attention during the last years

 Cvijovi ́c et al., 2015; Danino et al., 2017; 2018; 2016; Fung et al.,

016; Hidalgo et al., 2017; Kalyuzhny et al., 2015; Kessler et al.,

015; Kessler and Shnerb, 2014; Sæther and Engen, 2015 ). 

In this paper we would like to address a simple question, which

s also one of the cornerstones of the theories of population ge-

etics and community dynamics: the fate of a single mutant in a

nite size community. This question has been addressed long ago

or the cases with pure demographic stochasticity and constant se-

ection ( Crow et al., 1970; Ewens, 2012 ), and we would like to ex-

end the theory to include random selective forces. To do that, we

onsider a simple and generic model for a community of N individ-

als, affected by selection, demographic noise and temporal envi-

onmental stochasticity. Using asymptotic (large N ) techniques we

btained expressions for three quantities: 

1. The chance of fixation for a single mutant, �(n = 1) , which

is the probability that the system ends up in the absorbing

state with N mutants. 

2. The average time to absorption (fixation or loss) T A (n = 1) ,

the expected time taken to reach any one of the absorbing

states, given that the system is started with a single mu-

tant/invader. 

3. The average fixation time T f (n = 1) , i.e. the mean time be-

tween the introduction of the mutant/invader and the fixa-

tion of the system by its lineage, conditioned on fixation . 

In the above definitions, average is taken over both histories

nd initial conditions. For example, the average time to absorp-

ion is defined as T A = (T + 
A 

+ T −
A 

) / 2 , where T + 
A 

( T −
A 

) are the average

ime to absorption when at t = 0 the environment was in the plus

minus) state, i.e., when the fitness of the mutant type is higher

lower) than that of the wild type (see formal definitions below). 

. Methods 

We consider a community of N individuals, where at t = 0 one

ndividual is a mutant or invader and all others are wild types. Our

odel is inspired by the standard competitive Lotka–Volterra dy-

amics, where two species compete for the same resource. In its

ndividual based version one may consider two (randomly picked)

ndividuals that fight for a piece of food, say, the winner repro-

uces and the loser dies. In each elementary step of our Moran

rocess two individuals ( i and j ) are chosen at random for such a

uel. If both individuals belong to the same species, the result of

he duel does not affect the abundance. In case of an interspecific

uel, the chance of an individual to win depends on its relative fit-

ess. The mutant and its descendants have logarithmic fitness s μ
nd wild type individuals have fitness s w 

. A mutant type wins a

uel against a wild type with probability, 

 μ = 

1 

2 

+ 

s μ − s w 

4 

, (1) 

here the chance of the wild type to win is 1 − P μ. Since P μ de-

ends only on s μ − s w 

, we can take, without loss of generality,

 w 

= 0 and denote s μ (the logarithmic relative fitness of the mu-

ant) simply by s . Time is measured in units of generations, where

 generation is defined as N elementary duels. 

Under temporal environmental stochasticity s is a function of

ime and we assume that it takes the form 

 (t) = s 0 + η(t) , (2)
here s 0 is the time-averaged (log)-fitness difference between the

utant lineage and the wild types while the (zero mean) vari-

ble η( t ) reflects the effect of environmental variations. These en-

ironmental fluctuations are characterized by two quantities: their

mplitude γ and their correlation time (measured in units of a

eneration) δ. 

Following Danino et al. (2018) and Hidalgo et al. (2017) we

odel temporal environmental stochasticity by dichotomous (tele-

raphic) noise, so η( t ) may take two values, either (+ γ ) or (−γ ) .

fter each elementary duel the chance of the environment to

tay in the same state is 1 − 1 / (δN) , while its chance to flip (i.e,

γ → ∓γ ) is 1/( δN ). Both white Gaussian noise and white Poisson

oise can be recovered from the dichotomous noise by taking suit-

ble limits ( Ridolfi et al., 2011 ), so the results obtained here are

uite generic. A detailed description of the process, including the

ransition probabilities and the form of the corresponding back-

ard Kolomogorov equation (BKE), is given in Appendix A . 

This process is very similar to the one presented for the same

roblem in Ashcroft et al. (2014) , who provided closed-form ex-

ressions for fixation times and the fixation probability using the

heory of Markov chains and the elementary transition rates. Here

e would like to obtain explicit and simple expressions for these

uantities in the large- N limit, which is the relevant regime in

ost of the realistic applications. 

To do that, we implement the techniques we have developed

ecently in Danino et al. (2018) (the main results that are rele-

ant to this work are summarized in Appendix A ). We used the

ontinuum approximation, where the number of mutants n is re-

laced by their fraction x = n/N and quantities like �(x + 1 /N) are

xpanded to second order in 1/ N . The relevant BKEs emerge as two

oupled, second order differential equations [such as Eqs. (A.3) be-

ow]. Using a dominant balance analysis we can show that, in

he large N limit, these BKEs may be reduced to a single sec-

nd order differential equation. This procedure is demonstrated in

ppendix A for the time to absorption T A ≡ (T + 
A 

+ T −
A 

) / 2 : instead of

aving two coupled equations for T ±
A 

, we obtain a single equation

or T A . 

Using that, and the standard techniques to obtain �, T A and

 f ( Redner, 2001 ), we can write down, for each case, the rele-

ant equation with the appropriate boundary conditions, as de-

ailed in the appendices below [ Eqs. (B.1) , (C.1) and the pair of

qs. (D.1) and (D.2) ]. In all three cases the set of equations may

e solved quite easily using integration factor, but the results are

iven in terms of nested integrals over hypergeometric functions

hat do not provide a transparent analytic picture. To overcome

his difficulty, we have calculated the leading terms in the large

 asymptotic series ( Table 1 ). 

The details of these calculations are given in the three appen-

ices Appendix B–D . In the next section we present and discuss

he bottom-lines results in terms of s 0 (the time-averaged mu-

ant fitness), N (that sets the scale of demographic noise, which is

/ N ), g = γ 2 δ/ 2 , the effective strength of environmental stochas-

icity, α = s 0 /g, the ratio between deterministic and stochastic se-

ective forces and G ≡ Ng , the ratio between the environmental and

he demographic stochasticity (see glossary). 

Our operational definition of a ”generation” is N duels. To use

he formulas presented below with a different definition of a gen-

ration time, say, AN duels, one should stick to the definition of δ
s the persistence time of the environment in units of N . For ex-

mple, if the weather changes every 100 duels and the size of the

ommunity is N = 10 0 0 , δ = 0 . 1 no matter what A is. Doing that,

he formulas obtained here may be used as long as T f and T A are

ivided by A . 

As explained, the results presented here are the outcomes of

arge- N asymptotic analysis. In particular, the asymptotic matching

echnique used in the appendices assumes that the demographic
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Table 1 

Glossary. 

Term Description 

N number of individuals in the community. 

n number of mutant type individuals ( N − n wild type). 

x fraction of mutants, x = n/N. ( 1 − x is the fraction of wild type) 

s 0 time-averaged fitness of the mutant. 

δ correlation time of the environment, measured in generations. 

γ the amplitude of the fitness fluctuations. 

g ≡ δγ 2 /2 strength of environmental stochasticity. 

α ≡ s 0 / g the ratio between the constant selective force and the strength of temporal environmental stochasticity 

G ≡ N δγ 2 /2 scaled environmental stochasticity. 

T A (n = 1) mean persistence time for a two species system, if at t = 0 there is only a single mutant (n = 1) . Average (for this and other quantities) is taken over 

histories and initial conditions. 

�(n = 1) mean (over initial conditions) chance of fixation for a single mutant. 

T f (n = 1) mean time to fixation for a single mutant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. �(n = 1) vs. s 0 for different values of G . �(n = 1) , as obtained from numer- 

ical solutions of the discrete backward Kolomogorov equation (open circles), and 

the large G approximation, Eq. (5) (full lines), are plotted against s 0 for N = 10 5 

and different values of G = Nγ 2 δ/ 2 (see legend). The fit is almost perfect, with 

only slight deviations (where the analytic formula still have the same shape) at 

g = 2 · 10 −5 , G = 2 (see Eq. (3) ) and at g = 1 , G = 10 5 (where the continuum ap- 

proximation becomes problematic). For small values of s 0 , the chance of fixation 

grows as g increases. On the contrary, for large values of s 0 the chance of fixation 

decreases when g increases, as explained in the text. 
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noise terms 1/ N is negligible, with respect to gx (1 − x ) , as long as

x is not too close to zero or one. Accordingly, our analysis does not

cover the limit in which the environmental stochasticity vanishes,

i.e., g = 0 : the value of g may be vanishingly small as long as 

G = Ng � 1 . (3)

This implies that we cannot recover the purely demographic limit

where both g and s 0 vanishes. However for any finite s 0 our ex-

pressions converge to the correct answer even in the limit g → 0

as long as G � 1 (see discussion below). 

In the following section we compare our results with numeri-

cal solutions of the backward Kolomogorov equations that involve

simple inversion of the 2 N × 2 N transition matrix, as detailed in the

first appendix of Danino et al. (2018) . Using the sparsity of the rel-

evant matrices we were able to reach system sizes up to N = 10 6 . 

3. Results 

3.1. The chance of fixation �(n = 1) 

For pure demographic noise (neutral system, s 0 = 0 and g = 0 )

the chance of a mutant to win is known to be 

�g= s 0 =0 (n = 1) = 

1 

N 

. 

This result is trivial: since all individuals are symmetric, the chance

of the lineage of each of them to reach fixation must be equal. 

Under constant selection s 0 (still g = 0 ) the chance of a single

advantageous mutant to reach fixation is 

�g=0 (n = 1) = 

1 − e −s 0 

1 − e −Ns 0 
≈ 1 − e −s 0 ≈ s 0 , (4)

where the first approximation is the strong selection ( Ns 0 � 1)

limit, and the second corresponds to the large N , small s 0 , limit. 

The intuitive argument behind Eq. (4) is as fol-

lows Desai et al. (2007) : the mutant lineage starts to feel the

deterministic bias only at n c (s 0 , g = 0) ∼ 1 /s 0 , where its abun-

dance grows on average by one individual per generation. Below

n c the process is dominated by the demographic noise. Therefore,

the chance of fixation is actually the chance of the lineage of a

single mutant to reach n c under pure demographic noise 

�g=0 (n = 1) ≈ 1 

n c (s 0 , g = 0) 
≈ s 0 . 

The condition for strong selection is translated to N � n c . 

Now let us turn to our results. For a single mutant where

g is finite and G = gN � 1 , the chance of fixation (calculated in

Appendix B ) is, 

�(n = 1) ∼
1 − 1 

(1+ g) s 0 /g 

1 − G 

−2 s 0 /g 
. (5)
s demonstrated in Fig. 1 , this formula matches almost perfectly,

ithout any fitting parameters, the numerical solutions of the dis-

rete, exact BKE. Slight deviations are observed at G = 2 , where

he asymptotic matching analysis becomes problematic. When the

oise is very large ( g = 1 ) tiny deviations are observed again,

ere the reason is that the continuum approximation fails close

o x = 0 and x = 1 (for more details see Fig. B.5 at the end of

ppendix B and the discussion section). 

The formula for �(n = 1) , given in Eq. (5) has the following

eatures: 

• For s 0 = 0 , g finite, Eq. (5) converges to the expression sug-

gested in Cvijovi ́c et al. (2015) , namely, 

�(n = 1) = 

ln (1 + g) 

2 ln (G ) 
. (6)

In this case the chance of fixation increases with g . To under-

stand why, note that in the large N limit under environmental

stochasticity the abundance preforms a random walk along the

log (x/ [1 − x ]) axis, so the chance of fixation is much larger than
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Fig. 2. The value of N�(n = 1) − 1 in the Ns 0 − G plane. Under purely demographic 

stochasticity �(n = 1) = 1 /N, so the quantity N�(n = 1) − 1 is a measure of the 

effective distance from the demographic limit. Here this quantity, obtained from 

numerical solution of the BKE with N = 10 0 0 , is plotted in the Ns 0 − G plane (for 

both axes logarithmic scale has been used) where the grey level indicates its value. 

As expected, when both Ns 0 and G are smaller than one the system is close to the 

purely demographic regime. 
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1/ N (the chance in the purely demographic case) since the mu-

tant lineage may conquer the whole system in O(logN) steps. 
• On the other hand, when s 0 and g are finite but N → ∞ , the

denominator in Eq. (5) is unity and �(n = 1) is a monotonously

decreasing function of g . This has to do with the value of n c ,

below which the system is dominated by noise and above it

the growth is deterministic and fixation occurs almost surely.

While for a system without environmental variations n c (s 0 , g =
0) = 1 /s 0 , when g > 0 ( Cvijovi ́c et al., 2015; Danino et al., 2017 )

n c (s 0 , g) = 

e g/s 0 − 1 

g 
. (7)

This expression converges to 1/ s 0 when g = 0 , but increases ex-

ponentially with g so it is more difficult for the mutant lineage

to enter the deterministic growth zone. 
• Accordingly, for any finite value of N and s 0 there is a crit-

ical strength of environmental stochasticity, g c , above which

the chance of fixation increases with g . At g c d �n =1 /d g van-

ishes: this yields a transcendental equation for the critical noise

level. While we cannot solve for g c in general, numerical so-

lutions seem to indicate that g c ≈ s 0 ln ( N ). Up to logarithmic

corrections one may obtain this expression from the condition

N = n c (s 0 , g) , so the system is close to its time-averaged neu-

tral limit (in the sense used in Kalyuzhny et al. (2015) ) when

N < n c and is in the strong selection regime for N > n c . 

This outcome may have interesting implications to the theory

of bet-hedging strategies, phenotypic plasticity and related phe-

nomena ( Kussell and Leibler, 2005; Philippi and Seger, 1989 ).

Bet-hedging allows species and individuals to cope with chang-

ing environmental conditions by decreasing their fitness in

their typical conditions in exchange to increased fitness under

stressful conditions. If such a strategy happens to increase the

time average log fitness s 0 then of course it reduces the chance

of extinction. However, if the only effect of these strategies is

to reduce the variance in fitness γ while keeping s 0 fixed, they

will be beneficial for a species in a zero-sum competitive com-

munity only in the strong selection limit. 
• For deleterious mutations ( s 0 < 0), Eq. (5) predicts that the

chance of fixation decays with N like a power-law, (Ng) −2 | s 0 | /g .

Numerically, we discovered that this result holds only when

s 0 �γ . Curiously, this result is identical with the one obtained

recently by Assaf et al. (2013) . 
• As discussed towards the end of the methods section, the case

g = 0 is problematic since the condition G � 1 is no longer

holds. Still, as long as s 0 is finite, taking the limit g → 0 is legit-

imate if G is still large, e.g., g ∼ 1 / 
√ 

N , as N → ∞ . In this case

Eq. (5) converges to the large N limit of a system with constant

selection, 1 − e −s 0 ≈ s 0 , as needed. 
• As explained above, the pure demographic noise result � = 1 /N

cannot emerge from Eq. (5) by taking both s 0 and g to zero.

Since N should be taken to infinity first, the chance of fixation

in this case vanishes. Under constant selection the chance of

fixation is finite even in the infinite N limit (this is why we

obtained the correct result in that case), but not under pure

demographic stochasticity. However, in almost any realistic sce-

nario either s 0 or g (and perhaps both) are larger than 1/ N . If

both s 0 and g are vanishingly small one may simply use the

results for the pure demographic scenario since the selective

forces are only tiny perturbation. This point is demonstrated in

Fig. 2 . 

.2. The time to absorption T A 

The time to absorption T A is the average time from the event

f mutation/invasion until the system becomes homogenous again,
.e., until the mutant lineage either goes extinct or reaches fixa-

ion. In Appendix C we show that the asymptotic expression for

his quantity is, 

 A (n = 1) = 

(
ln (G ) 

s 0 
− G 

2 s 0 /g β2 − β1 

G 

2 s 0 /g − 1 

)(
1 − 1 

(1 + g) s 0 /g 

)

− 1 

g(1 + g) s 0 /g 

∫ g 

0 

ln (z) dz 

(1 + z) 1 −s 0 /g 
, (8) 

here 

1 ≡ 1 

s 0 
[ H(α) + πcot(πα) + ln (G )] , 

2 ≡ 1 

s 0 
[ −H(−α) + πcot(πα) − ln (G )] , 

nd H ( x ) is the Harmonic number. This expression becomes sim-

ler when N approaches infinity, where it takes the form, 

 A (n = 1) ∼ 2 

s 0 

(
1 − 1 

(1 + g) s 0 /g 

)
ln (N) . (9)

owever, the rate of convergence of Eqs. (8) and (9) is slow, and

hen we tested our results against the numerical solutions of the

KE at N = 10 5 ( Fig. 3 ), we implemented Eq. (8) . 

• When g → 0 Eq. (8) converges to 

T A (n = 1) ∼ 2(1 − e −s 0 ) ln (N) /s 0 ≈ 2 ln (N) . (10)

This is the correct limit for a singleton without environmental

stochasticity ( Ewens, 2012 ). 
• On the other hand when s 0 → 0 (9) yields 

T A (n = 1) ∼ 2 

ln (1 + g) 

g 
ln (N) , (11)

which it the result obtained in Danino et al. (2018) . The simple

expression (9) interpolates between these two limits. Unlike the

fixation time considered below, T A is always logarithmic in N ,

hence the interpolation between these two limits involves only

the prefactor. 

.3. The time to fixation T f 

The fixation time is the average time between mutation and fix-

tion, when the average is taken over all the trajectories that start

t n = 1 and end up at n = N. In Appendix D we show that, 

 f (n = 1) ∼ 2 

(
[1 + G 

2 s 0 /g ] ln (G ) 

s 0 [ G 

2 s 0 /g − 1] 
− πcot (πs 0 /g) 

s 0 

+ 

H(s 0 /g) + G 

2 s 0 /g H(−s 0 /g) 

s 0 [ G 

2 s 0 /g − 1] 

)
. (12) 
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Fig. 3. T A (n = 1) vs. s 0 . The time to absorption of a single mutant, as obtained from 

numerical solutions of the discrete backward Kolomogorov equation (filled circles), 

is compared with the predictions of Eq. (8) (lines). The results are plotted against s 0 
for N = 10 5 , δ = 0 . 09 , and the values of γ are 0.1 (blue), 0.4 (green) and 0.8 (red), 

so g runs between 4 . 5 · 10 −4 and 2 . 9 · 10 −2 . Since the extinction times are of order 

one, the large N behavior of T A is determined by � · T f . Accordingly T A first increases 

with s 0 (since � increases) and then decreases (when the dominant effect is the 

decrease of T f with s 0 ). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 4. T f (n = 1) vs. s 0 . The time to fixation, as obtained from numerical solutions 

of the discrete backward Kolomogorov equation (filled circles), is compared with 

the predictions of Eq. (12) (full lines), both plotted against s 0 for N = 10 5 , γ = 0 . 1 

and δ = 0 . 09 ( g = 4 . 5 · 10 −4 , blue) and δ = 0 . 9 ( g = 4 . 5 · 10 −3 , brown). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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Although this expression has a singular point at s 0 = g, the curve

is smooth out of a region of width 1/ N around the singular point,

so this singularity is negligible in the large N limit. Fig. 4 depicts

the fit of (12) to the numerical solution of the discrete BKE. 

• As N → ∞ when s 0 and g are kept fixed, Eq. (12) yields, 

T f (n = 1) ∼ 2 

| s 0 | ln (N) , (13)

as expected. In this limit the random walk in the log-abundance

space, associated with the environmental stochasticity, may be

neglected with respect to the constant bias. 
• On the other hand, for fixed N and g when s 0 vanishes, 

T f (n = 1) ∼ 2 

3 g 
ln 

2 
(gN) . (14)

Note that Eq. (14) is a result of a third order expansion of (12) ,

where the lower order terms cancel out. For fixed g , the large

N approximation Eq. (13) is valid (as in the case of �) as long

as G 

2 s 0 /g � 1 , i.e., as long as s 0 ln ( gN )/ g > 1, or simply N � n c ( s 0 ,

g ). 
• T f is a symmetric function of s 0 (this was shown, for a model

without environmental stochasticity, in Taylor et al. (2006) .

Eq. (12) implies that this feature holds under fluctuating selec-

tion). T f peaks at s 0 = 0 . 

. Discussion 

Through this paper we have calculated and analyzed three

undamental quantities that have to do with the fate of a mutant,

r an immigrant, in a community of size N under the effect of

election, demographic stochasticity (drift) and environmental

ariations. These quantities: the chance of fixation, the time to

bsorption and the time to fixation, govern the dynamics of evo-

ution for a community with fixed mutation rate, as explained in

vijovi ́c et al. (2015) and Danino et al. (2017) . We have focused our

iscussion on the fate of a single mutant/invader; other quantities,

ike the maximum time to absorption (for example, in the absence

f selection it is clear that the maximum time to absorption occurs

hen the community is divided equally between the two species,

 (t = 0) = N/ 2 ) were calculated in Danino et al. (2018) . In fact, the

ame analytic methods we have used in the appendices may be

tilized to calculate the relevant quantities for any value of n (not

nly a single mutant) given N, g and s 0 . 

Our analysis is based on equations for the average quantities,

here average is taken over both histories and initial conditions.

hese equations are similar to those obtained using the standard

iffusion approximation ( Karlin and Taylor, 1981 ), but there are a

ew technical differences. Our treatment begins with the introduc-

ion of an exact backward Kolomogorov equation, followed by tran-

ition to the continuum, dominant balance analysis that allows us

o neglect a few terms and then by the calculation of the large N

symptotic behavior. This methodology allows for better identifica-

ion of the limits of our theory, and we would like to emphasize

hree of these limiting factors: 

1. ”Single sweep” fixation : In our results, the effect of en-

vironmental noise is expressed by a single parameter g =
γ 2 δ/ 2 . This parameter may be considered as the diffusion

constant in the log-abundance space: If x = n/N is the frac-

tion of mutants and ˙ x = ±γ x (1 − x ) , the system performs

an unbiased random walk on the z = ln [ x/ (1 − x )] axis with

an effective “diffusion constant” γ 2 δ. Clearly, this is not the

case when the fixation takes place during δ generations, i.e.,

when δ > ln (N) / (γ + s ) . In such a case the single parameter

( g ) scaling breaks down. This possibility has been discussed

in Cvijovi ́c et al. (2015) and Danino et al. (2018) , but appears

to be less interesting as it describes an isolated catastrophe

instead of the accumulation of environmental variations over

time. 

2. Breakdown of the continuum approximation : When the

quantities considered here change their values abruptly be-

tween n and n + 1 (this happens, usually, close to n = 0 or

n = N) the transition to the continuum may fail and one

should consider the original difference equations instead of

the differential equations. For a detailed discussion of this

problem (in different system) and a WKB recipe suggested

for that case, see Kessler and Shnerb (2007) . In Fig. 1 above
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this problem manifests itself in the g = 1 , G = 2 · 10 5 (very

strong stochasticity) case. 

Assaf et al. (2013) have considered a prisoner dilemma game

that may be mapped into the negative s 0 case of our system,

and implemented the WKB technique. To do that, they in-

troduced reflecting boundary conditions at the initial value

of x , and exploit the relationship between the mean fixation

time and the probability of fixation in this modified system.

As a result, their approach allows them to obtain the leading

exponential behavior, but not the prefactors. 

3. Breakdown of the asymptotic matching : As discussed

above, our asymptotic matching analysis is based on the as-

sumption that G � 1. If this is not the case, one cannot iden-

tify the inner, middle and outer regimes as done in the ap-

pendices. In Fig. 1 we have seen, indeed, that when G = 2

the deviations of our theory from the exact numerical re-

sults are identifiable. 

One aspect of community dynamics that we did not take into

ccount is a stabilizing mechanism which is similar to the one

nown as the storage effect ( Chesson and Warner, 1981 ). For a sys-

em with storage, the environmental variations stabilizes the coex-

stence state (in the absence of selection, at n = N/ 2 ), thus facili-

ating the invasion of new species or a mutant (and increasing the

hance of fixation ( Danino et al., 2017 )). Quantities like the time to

xation, or even the chance of fixation per se, may be less rel-

vant for systems with storage effect. In these systems, when a

utant invades it typically reaches the coexistence state and stay

round for a long time (about N 

1/ δ generations, see Danino et al.,

018; Hidalgo et al., 2017 ), only then one of the species goes ex-

inct. Accordingly, for most purposes the relevant quantity under

torage is not the chance of fixation but the chance of establish-

ent ( Danino et al., 2017 ). We hope to address this question in

ubsequent publication. 
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ppendix A. Technical definitions and the Backward 

olomogorov equation 

Our Moran process under dichotomous stochasticity is fully

haracterized by twelve transition rates. In each elementary step

he mutant population may stay the same or grow/shrink by one

ndividual. At the same time the environment may switch from

ts (+) state (where the chance of the mutant to win a duel is

 / 2 + s 0 / 4 + γ / 4 ) to a (−) state (where the winning probability is

 / 2 + s 0 / 4 − γ / 4 ) and vice versa. Defining x = n/N as the mutant

raction in the population, the transition probabilities W are given

y, 

 

++ 
n → n +1 = W 

−−
n → n −1 = 2 x (1 − x ) 

(
1 

2 

+ 

s 0 
4 

+ 

γ

4 

)(
1 − 1 

δN 

)

 

−−
n → n +1 = W 

++ 
n → n −1 = 2 x (1 − x ) 

(
1 

2 

+ 

s 0 
4 

− γ

4 

)(
1 − 1 

δN 

)

 

+ −
n → n +1 = W 

−+ 
n → n −1 = 2 x (1 − x ) 

(
1 

2 

+ 

s 0 
4 

− γ

4 

)
1 

δN 

 

−+ 
n → n +1 = W 

+ −
n → n −1 = 2 x (1 − x ) 

(
1 

2 

+ 

s 0 
4 

+ 

γ

4 

)
1 

δN 

W 

++ 
n → n = W 

−−
n → n = 

(
1 − 1 

δN 

)
[1 − 2 x (1 − x )] 

W 

+ −
n → n = W 

−+ 
n → n = 

1 

[1 − 2 x (1 − x )] (A.1) 

δN t
here W 

++ 
n → n +1 

is the probability to increase the mutant popula-

ion by one individual while staying in the plus environment, while

 

+ −
n → n +1 

is the chance that the environment switches from plus to

inus and after this switch the mutant population grew. 

After each duel time is incremented by 1/ N , so the BKE for the

ime to absorption, say, takes the form, 

 

+ 
A 

(n ) = 

1 

N 

+ W 

++ 
n → n +1 T 

+ 
A 

(n + 1) + W 

++ 
n → n −1 T 

+ 
A 

(n −1) + W 

++ 
n → n T 

+ 
A 

(n ) 

+ W 

+ −
n → n −1 T 

−
A 

(n −1) + W 

+ −
n → n +1 T 

−
A 

(n + 1) + W 

+ −
n → n T 

−
A 

(n ) 

 

−
A 

(n ) = 

1 

N 

+ W 

−−
n → n −1 T 

−
A 

(n −1) + W 

−−
n → n +1 T 

−
A 

(n + 1) + W 

−−
n → n T 

−
A 

(n ) 

+ W 

−+ 
n → n +1 T 

+ 
A 

(n + 1) + W 

−+ 
n → n −1 T 

+ 
A 

(n − 1) + W 

−+ 
n → n T 

+ 
A 

(n ) 

(A.2) 

Defining T A (n ) = [ T + 
A 

(n ) + T −
A 

(n )] / 2 , 	(n ) = [ T + 
A 

(n ) − T −
A 

(n )] / 2 ,

oving to the continuum limit and expanding T ( x ± 1/ N ) to the

econd order in a Taylor series one finds: 

2	

δNx (1 − x ) 
= 

(
1 − 2 

δN 

)[
γ

N 

T ′ A + 

	′′ 
N 

2 
+ s 0 

	′ 
N 

]

− 1 

x (1 − x ) 
= 

T ′′ A 

N 

+ γ	′ + s 0 T 
′ 

A . (A.3) 

here primes indicate a derivative with respect to x . If δ is kept

xed (say, 1/10 of a generation) and N increases, δN � 1 and 

2	

δx (1 − x ) 
= γ T ′ A + 

	′′ 
N 

+ s 0 	
′ 

− 1 

x (1 − x ) 
= 

T ′′ A 

N 

+ γ	′ + s 0 T 
′ 

A . (A.4) 

eglecting the 	′ ′ / N and the 	′ terms in the upper equation, solv-

ng for 	 in terms of T ′ 
A 
, 	 = γ δx (1 − x ) T ′ 

A 
/ 2 , and plugging the

xpression for 	′ into the lower equation, one obtains, 

1 

x (1 − x ) 
= 

[ 
1 

N 

+ gx (1 − x )] T ′′ A + [ s 0 + g(1 − 2 x ) 
] 

T ′ A . (A.5) 

hich is exactly Eq. (C.1) . 

The dominant balance argument that leads to the neglect of the
′ ′ / N and the 	′ terms in the upper equation was motivated by a

erm by term analysis of the numerical solutions of the discrete

KE (A.2) . The argument is self consistent in the middle regime:

xtracting 	 from Eq. (C.13) and calculating the relevant terms, the

wo neglected terms were found to be subdominant in the G → ∞
imit. 

Apparently, this has to be the case. First, if the γ S ′ term is sub-

ominant, then 	 = 0 and the effect of environmental stochasticity

anishes. Therefore, the only question is, which term balances the

S ′ in the large N limit. Clearly, if the balancing term is the 	′ en-

ironmental stochasticity only renormalizes the value of s 0 , while

he 	′ ′ leads to a renormalization of the strength of the demo-

raphic noise. Accordingly, and in agreement with the outcomes

f our numerical solutions, the dominant balance argument makes

ense. 

ppendix B. Large-N asymptotics for the chance of fixation �

Defining x = n/N and using the results of

anino et al. (2018) ( Appendix C ), the chance of fixation �( x )

atisfies ( Redner, 2001 ), 

1 

N 

+ gx (1 − x ) 
)
�′′ (x ) + (s 0 + g(1 − 2 x ))�′ (x ) = 0 , 

�(0) = 0 �(1) = 1 . (B.1) 

To calculate the large N asymptotic of �, we will solve (B.1) in

hree different regions: 

https://doi.org/10.13039/501100003977
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Fig. B1. �(n = 1) , as obtained from numerical solutions of the discrete backward 

Kolomogorov equation, divided by the large G approximation, Eq. (B.14) , for differ- 

ent values of s 0 as function of G . As G gets smaller the approximation (B.14) be- 

comes less accurate. The large G ratio is closer to one when s 0 is small. When s 0 
is large, the continuum approximation at small values of n is not accurate, as dis- 

cussed in the main text (see also the discussion section). 
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T

1. The inner region 0 ≤ x < < 1. In this region the number of

individuals may be small [even for large N , n = Nx may be

O(1) ] and demographic noise affects the system. The rele-

vant equation for �in ( x ) is obtained from (B.1) by replacing

1 − x and 1 − 2 x by unity, and is subject to a single bound-

ary condition at zero, (
1 

N 

+ gx 

)
�′′ 

in (x ) + (s 0 + g)�′ 
in (x ) = 0 , �in (0) = 0 . 

(B.2)

Using an integrating factor one may easily show that, 

�in (x ) = C 1 

(
1 − 1 

(1 + Gx ) α

)
, (B.3)

where α ≡ s 0 / g and G ≡ Ng . Eq. (B.3) satisfies the left bound-

ary condition and depends on one constant, C 1 , to be deter-

mined below using an asymptotic matching. 

2. In the intermediate region, 0 � x � 1, the demographic noise

is negligible (for any x in this regime, when N → ∞ the 1/ N

term is much smaller than gx (1 − x ) . Accordingly, the rele-

vant equation is, 

( gx (1 − x ) ) �′′ 
M 

(x ) + (s 0 + g(1 − x ))�′ 
M 

(x ) = 0 , (B.4)

or, 

�′′ 
M 

(x ) + 

(
s 0 
g 

ln 

′ 
(

x 

1 − x 

)
+ ln 

′ 
(x [1 − x ]) 

)
�′ 

M 

(x ) 

= 

(
�′ 

M 

(
x α+1 

(1 − x ) α−1 

))′ 
= 0 . (B.5)

This yields, 

�M 

(x ) = C 2 

(
1 − x 

x 

)α

+ C 3 . (B.6)

Here we have two free constants as none of the boundary

condition is relevant in the middle regime. 

3. Finally, in the outer regime 1 − x � 1 , x is close to one and

1 − 2 x ≈ (−1) , so we have to consider (
1 

N 

+ g(1 − x ) 
)
�′′ 

out (x ) + (s 0 − g)�′ 
out (x ) = 0 , 

�out (1) = 1 . (B.7)
obtaining, 

�out (x ) = 1 − C 4 ( 1 − [1 + G (1 − x )] α) . (B.8)

In fact, the expression (B.9) may be obtained directly from

(B.3) using the symmetry of the problem: the chace of a

species of abundance x and selection parameter s 0 to win,

is the same as its chance to lose if its abundance is 1 − x

and the selective parameter is reversed, 

�(s 0 , x ) = 1 − �(−s 0 , 1 − x ) . (B.9)

Using equations (B.3), (B.6) and (B.9) , we can now find the C

onstants by matching the solutions in the overlap regimes. �in 

ust match �M 

when x � 1 but Gx � 1, meaning that 

 1 − C 1 
(Gx ) α

= 

C 2 
x α

+ C 3 C 1 = C 3 , G 

αC 2 = −C 1 . (B.10)

 similar matching of �M 

and �out when both 1 − x � 1 and

 (1 − x ) � 1 yields 

 − C 4 + C 4 [ G (1 −x )] α = C 2 (1 −x ) α + C 3 1 −C 4 = C 3 , G 

αC 4 =C 2 . 

(B.11)

ccordingly, 

 1 = C 3 = 

1 

1 − G 

−2 α

C 2 = 

1 

G 

−α − G 

α

C 4 = 

1 

1 − G 

2 α
. (B.12)

In the large N limit, 

�in (x ) ∼
(

1 

1 − G 

−2 α

)(
1 − 1 

(1 + Gx ) α

)
, 

�M 

(x ) ∼
(

1 

G 

−α − G 

α

)(
1 − x 

x 

)α

+ 

1 

1 − G 

−2 α
, 

out (x ) ∼ 1 −
(

1 

1 − G 

2 α

)
( 1 − [1 + G (1 − x )] α) . (B.13)

he chance of a single mutant ( n = 1 , x = 1 /N, Gx = Ngx = g) to

in is given by, 

in (1 /N) = �(n = 1) ∼
1 − 1 

(1+ g) s 0 /g 

1 − (Ng) −2 s 0 /g 
. (B.14)

This approximation is very close to the results obtained from

he numerical solution of the exact BKE, as demonstrated in

ig. B.5 . 

ppendix C. Absorption times 

The relevant BKE is, 

1 

N 

+ gx (1 − x ) 
)

T ′′ A (x ) + (s 0 + g(1 − 2 x )) T ′ A (x ) = − 1 

x (1 − x ) 
, 

T A (0) = T A (1) = 0 . (C.1)

In the inner regime x � 1 

1 

N 

+ gx 

)
T ′′ A,in (x ) + (s 0 + g) T ′ A,in (x ) = −1 

x 
, T A,in (0) = 0 . (C.2)

ccordingly 

T ′ A,in 

(
1 

N 

+ gx 

)1+ α)′ 
= 

(
1 
N 

+ gx 
)α

x 
. (C.3)

he solution that satisfies the left boundary condition is, 
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 A,in (x ) = 

˜ C 1 

(
1 − 1 

(1 + Gx ) α

)

− N 

∫ x 

0 

dt 

( 1 + Gt ) 
1+ α

∫ t 

dq 
( 1 + Gq ) 

α

q 
. (C.4) 

he inner integral may be written as 

 t 

dq (1 + Gq ) α
d 

dq 
ln (q ) = (1 + Gt ) α ln (t ) 

−αG 

∫ t 

(1 + Gq ) α−1 ln (q ) dq (C.5) 

lugging (C.5) into (C.4) and using integration by parts to simplify,

ne obtains, 

αG 

∫ x 

0 

dt 

(1 + Gt) 1+ α

∫ t 

(1 + Gq ) α−1 ln (q ) dq 

= 

1 

(1 + Gx ) α

∫ x 

0 

ln (t) 

(1 + Gt) 1 −α
dt −

∫ x 

0 

ln (t) 

(1 + Gt) 
. (C.6) 

he last term of (C.6) cancels with the middle term of (C.5) when

hey both plugged in (C.4) . Accordingly, 

 A,in (x ) = 

˜ C 1 

(
1 − 1 

(1 + Gx ) α

)
− N 

(1 + Gx ) α

∫ x 

0 

ln (t) 

(1 + Gt) 1 −α
dt. 

(C.7) 

he substitution z = Gt yields, 

 x 

0 

ln (t) 

(1 + Gt) 1 −α
dt = 

∫ Gx 

0 

ln (z) − ln (G ) 

(1 + z) 1 −α

dz 

G 

= − ln (G ) 

αG 

( (1 + Gx ) α−1 ) + 

1 

G 

∫ Gx 

0 

ln (z) dz 

(1 + z) 1 −α
, 

(C.8) 

o finally, 

 A,in (x ) = 

(
˜ C 1 + 

ln (G ) 

s 0 

)(
1 − 1 

(1 + Gx ) α

)

− 1 

g(1 + Gx ) α

∫ Gx 

0 

ln (z) dz 

(1 + z) 1 −α
. (C.9) 

To match T A, in with T A, M 

one needs its asymptotic behaviour as

x → ∞ . Expanding (C.9) one finds, 

 A,in (Gx → ∞ ) ∼ ˜ C 1 + 

g 

s 2 
0 

− ln (x ) 

s 0 
− 1 

s 0 

H(α) + πcot (πα) + ln (G )

(Gx ) α

−
˜ C 1 

(Gx ) α
. (C.10)

sing the symmetry T A (s 0 , x ) = T A (−s 0 , 1 − x ) one can find easily

he relevant asymptotic behavior of T out , 

 A,out (G (1 − x ) → ∞ ) ∼ ˜ C 4 + 

g 

s 2 
0 

+ 

ln (1 − x ) 

s 0 

+ 

1 

s 0 

H(−α) − πcot (πα) + ln (G ) 

(Gx ) α

− ˜ C 4 [ G (1 − x )] α. (C.11) 

he expressions (C.10) and (C.11) should match the intermediate

olution T A, M 

in the relevant regimes. T A, M 

satisfies, 

x (1 − x ) T ′′ A,M 

(x ) + [ s 0 + g(1 − 2 x )] T ′ A,M 

(x ) = − 1 

x (1 − x ) 
, (C.12)

nd admits a relatively simple solution 

 A,M 

(x ) = 

˜ C 3 + 

˜ C 2 

(
1 − x 

x 

)α

− 1 

s 0 
ln 

(
x 

1 − x 

)
. (C.13)
atching in the regime x � 1 � Gx one finds 

˜ 
 3 = 

˜ C 1 + 

g 

s 2 
0 

, ˜ C 1 + β1 = −G 

α ˜ C 2 , (C.14)

here 

1 = 

1 

s 0 
[ H(α) + πcot(πα) + ln (G )] . 

imilarly in the regime 1 − x � 1 � G (1 − x ) the matching yields 

˜ 
 3 = 

˜ C 4 + 

g 

s 2 
0 

, ˜ C 4 + β2 = −G 

−α ˜ C 2 , (C.15)

ith 

2 = 

1 

s 0 
[ −H(−α) + πcot(πα) − ln (G )] . 

rom these algebraic relations one finds, 

˜ 
 1 = −G 

2 αβ2 − β1 

G 

2 α − 1 

(C.16) 

For a single mutant, the time to absorption T A, in (1/ N ) is ob-

ained by plugging ˜ C 1 into (C.9) with x → 1/ N , 

 A,in (1 /N) = 

(
ln (G ) 

s 0 
− G 

2 s 0 /g β2 − β1 

G 

2 s 0 /g − 1 

)(
1 − 1 

(1 + g) s 0 /g 

)

− 1 

g(1 + g) s 0 /g 

∫ g 

0 

ln (z) dz 

(1 + z) 1 −s 0 /g 
. (C.17) 

he leading behavior of the time to absorption for a single mutant

s given by the large N asymptotics of (C.17) , 

 A (n = 1) ∼ 2 

s 0 

(
1 − 1 

(1 + g) s 0 /g 

)
ln (N) . (C.18)

ppendix D. Time to fixation T f 

To obtain the time to fixation ( Redner, 2001 ), one should solve

 BKE for 

(x ) = �(x ) T f (x ) . (D.1)

This BKE takes the form, 

1 

N 

+ gx (1 − x ) 
)

Q 

′′ (x ) + (s 0 + g(1 − 2 x )) Q 

′ (x ) = − �(x ) 

x (1 − x ) 
, 

Q(0) = Q(1) = 0 . (D.2) 

e would like to solve for Q in the inner, outer and intermedi-

te regime, using the values of � obtained in Eqs. (B.12) –(B.13) for

ach of these regimes. (
1 

N 

+ gx 

)
Q 

′′ 
in (x ) + (s 0 + g) Q 

′ 
in (x ) = −C 1 

x 
+ 

C 1 

N 

αx 
(

1 
N 

+ gx 
)α

Q in (0) = 0 gx (1 − x ) Q 

′′ 
M 

(x ) + [ s 0 + g(1 − 2 x )] Q 

′ 
M 

(x ) 

= − C 3 
x (1 − x ) 

− C 2 (1 − x ) α−1 

x α+1 (
1 

N 

+ g(1 − x ) 
)

Q 

′′ 
out (x ) + (s 0 − g) Q 

′ 
out (x ) = −1 − C 4 

1 − x 

−
C 4 N 

α
(

1 
N 

+ g(1 − x ) 
)α

1 − x 
Q out (1) = 0 . (D.3) 

Since (D.2) is linear, the solution for Q ( x ) in each regime con-

ains a homogenous term which is equal to � up to a constant, a

pecial solution that has the form of T and another special solution

hat comes from the last terms if (D.3) . Denoting the constants of

he homogenous solutions by C , we obtained, for example, 

Q in (x ) = C 1 

(
1 − 1 

(1 + Gx ) α

)
− C 1 N 

(1 + Gx ) α

∫ x dt ln (t) 

(1 + Gt) 1 −α

0 



92 M. Danino, N.M. Shnerb / Journal of Theoretical Biology 441 (2018) 84–92 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

D  

 

D  

 

D  

 

F  

 

H  

 

K  

 

K  

 

K  

K
 

 

K  

K  

K  

 

L  

M  

 

 

 

R  

R  

S  

T  

W  
+ C 1 N 

∫ x 

0 

dt ln (t) 

(1 + Gt) 1+ α

Q M 

(x ) = C 2 

(
1 − x 

x 

)α

+ C 3 − C 3 
s 0 

ln 

(
x 

1 − x 

)
+ 

gC 2 

s 2 
0 

(
1 − x 

x 

)α

+ 

C 2 
s 0 

(
1 − x 

x 

)α

ln 

(
x 

1 − x 

)

Q out (x ) = C 4 ( 1 − [1 + G (1 − x )] α) − 1 − C 4 N 

(1 + G (1 − x )) −α

×
∫ 1 −x 

0 

dt ln (t) 

(1 + Gt) 1+ α − C 4 N 

∫ 1 −x 

0 

dt ln (t) 

(1 + Gt) 1 −α
. 

To match these solutions in the overlap regimes, the constant C 

should satisfy, 

C 3 = C 1 + C 1 
g 

s 2 
0 

+ C 1 β2 C 3 = C 4 + (1 − C 4 ) 
g 

s 2 
0 

− C 4 β1 

−G 

αC 2 = C 1 + C 1 β1 − G 

−αC 2 = C 4 + (1 − C 4 ) β2 , (D.5)

which implies 

 1 = 

2 β1 G 

−2 α − 2 β2 G 

2 α

(G 

2 α − G 

−2 α) 2 
. (D.6)

Plugging this into the expression for Q in and evaluating T f =
Q in / �in at x = 1 /N, one finds the fixation time of a singleton: 

T f (1 /N) = T f (n = 1) ∼ 2 

(
[1 + G 

2 α] ln (G ) 

s 0 [ G 

2 α − 1] 
− π cot (πα) 

s 0 

+ 

H(α) + G 

2 αH(−α) 

s 0 [ G 

2 α − 1] 

)
. (D.7)
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