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Competition is the main driver of population dynamics, which shapes the genetic composition of populations
and the assembly of ecological communities. Neutral models assume that all the individuals are equivalent and that
the dynamics is governed by demographic (shot) noise, with a steady state species abundance distribution (SAD)
that reflects a mutation-extinction equilibrium. Recently, many empirical and theoretical studies emphasized
the importance of environmental variations that affect coherently the relative fitness of entire populations. Here
we consider two generic time-averaged neutral models; in both the relative fitness of each species fluctuates
independently in time but its mean is zero. The first (model A) describes a system with local competition and linear
fitness dependence of the birth-death rates, while in the second (model B) the competition is global and the fitness
dependence is nonlinear. Due to this nonlinearity, model B admits a noise-induced stabilization mechanism that
facilitates the invasion of new mutants. A self-consistent mean-field approach is used to reduce the multispecies
problem to two-species dynamics, and the large-N asymptotics of the emerging set of Fokker-Planck equations
is presented and solved. Our analytic expressions are shown to fit the SADs obtained from extensive Monte Carlo
simulations and from numerical solutions of the corresponding master equations.
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I. INTRODUCTION21

Neutral models play a central role in the theoretical analysis22

of population genetics and community ecology [1–3]. These23

models neglect the details of interspecific interactions and24

emphasize the role of stochastic processes as key drivers25

of abundance variation and species diversity. Deterministic26

factors (like selection, niche partitioning, and species specific27

interactions) are not included in the model. Instead, one consid-28

ers a (usually, zero sum) competition between types (species,29

strains, alleles, etc.) where all the individuals are functionally30

equivalent (“neutral”). The structure of a community, i.e., the31

commonness or rarity of different species, reflects the inherent32

stochasticity of the underlying birth-death process, while the33

corresponding birth-death rates are species independent and34

are fixed in time.35

A two-species competition of this kind is described by36

the classical voter model [4] that leads, inevitably, to the37

extinction of one of the species and to fixation by the other.38

When the model allows for mutation or speciation events1 39

the system may reach a steady state that reflects the balance40

between mutations and extinctions. Quantities like the species41

abundance distribution (SAD, also known as the site frequency42

spectrum) and the mean species richness (SR) may then be cal-43

culated as a function of the model parameters [3,5]. The ability44

of these SADs to account for empirically observed species45

abundance distributions in many high-diversity assemblages46

[6–8] is considered as the main success of the neutral model47

of biodiversity.48

Despite their great influence, some aspects of the traditional49

neutral models are problematic. In particular, these models50

assume that the dynamics is driven by a stationary birth-death51

process. Under this assumption, variations in abundance of52

a species reflect the cumulative effect of the uncorrelated53

reproductive success of all its individuals. In such a binomial 54

process both the per-generation population variance and the 55

time to extinction (in generations) scale linearly with the 56

population size. In contrast, many empirical analyses show that 57

the magnitude of temporal abundance variations is much higher 58

[9–14], that the scaling of population variance with population 59

size is superlinear [12,15], and that the rate of changes in 60

species composition is much faster than the predictions of the 61

neutral model [16,17]. 62

The simplest solution to that problem is environmental 63

stochasticity [18] (also known as fluctuating selection [19,20], 64

temporal niches, etc.): a time-varying environment may alter 65

the demographic parameters (such as growth and mortality 66

rates) and the competitive ability of an entire population, so 67

the reproductive success (say, the average number of offspring) 68

of all the conspecific individuals increases or decreases in a 69

correlated manner. Accordingly, population variance scales 70

with n2, where n is the population size. The stochastic process 71

is no longer stationary, and at any given time some species are 72

superior and others are inferior. The model may still be consid- 73

ered as neutral if the time-averaged fitnesses of all species are 74

equal (time-averaged neutrality [17]). Numerical and empirical 75

analyses suggest that time-averaged neutral models of this type 76

may explain both static and dynamic patterns in ecological 77

communities [17,21]. These observations raise the need for an 78

analytic solution for time-averaged neutral models. 79

A few versions of the two-species time-averaged neutral 80

model were considered recently (sometimes in the context 81

of the speed of evolution [22,23]), and quantities like the 82

chance of fixation and the time to fixation were calculated 83

[24–29]. Other works dealt with the dynamics of a single 84

species under environmental variability, trying to infer the 85

SAD of the corresponding multispecies neutral model from 86

the results [30–32]. Here we present a solution for the species 87
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TABLE I. Glossary.

Term Description

N Number of individuals in the community. The strength of demographic noise scales like 1/N .
ν The chance of mutation or speciation (per birth).
θ ≡ Nν The fundamental biodiversity number. Mean number of mutations per generation.
δ Correlation time of the environment, measured in generations.
γ The amplitude of the fitness fluctuations.
g γ 2δ/2, the strength of environmental stochasticity.
G ≡ Ng The ratio between environmental stochasticity and demographic noise.
ν/g = θ/G The ratio between mutation load and environmental stochasticity.

abundance distribution in a multispecies time-averaged neutral88

model, where the process of species extinction is compensated

2

89

by the introduction of different types via mutation or spe-3 90

ciation events. Our results are given in terms of the chance91

for mutation, the strength of demographic noise, and the92

amplitude of environmental variations; the relevant definitions93

are summarized in Table I.94

Technically speaking, neutral models are easier to solve95

since the multispecies problem may be reduced to a set of96

(identical) single species problems [33]. The abundance of97

a focal species n and the size of the community N fully98

determine the transition rates of this focal species, since99

demographic equivalence implies that the partitioning of the100

N − n individuals among all other species is irrelevant. This101

feature is lost when environmental variations are taken into102

account, as the instantaneous fitness of all other individuals103

does affect the focal species. We will show that, in high104

diversity assemblages, this obstacle may be overcome using105

an effective medium theory that becomes even simpler in the106

large N limit.107

To pave the way for this analysis, we will consider first108

a two-type, one-way mutation model with environmental109

stochasticity. In this model the state (abundance and fitness)110

of the focal species unambiguously determines the state of the111

whole system, so the analysis is relatively easy. Then we will112

show that the full, multispecies model may be reduced (with113

appropriate modifications) to the two-species case and, using114

this feature, we obtain the required SADs.115

To facilitate the discussion, we introduce three appendixes116

in which technicalities are introduced and discussed. Ap-117

pendix A explains, using a simple example, the transition from118

the master equation to the Fokker-Planck equation with a par-119

ticular emphasis on the boundary conditions. The correspond-120

ing calculations for the two-species, one-sided mutation case121

are presented in Appendix B, and the relevant modifications122

that allow us to solve the time-averaged neutral model are123

discussed in Appendix C.124

II. MODELS A AND B: ENVIRONMENTAL125

STOCHASTICITY AND NOISE INDUCED STABILIZATION126

In this section we would like to provide a few basic127

insights regarding the effect of environmental variations, and128

in particular to make a distinction between microscopic models129

that lead to noise-induced stability and those that do not130

support this feature. Our two examples here involve global131

and local competition; we first present these models with pure132

demographic noise, where they lead to the same outcome, 133

then we will explain their different behavior in fluctuating 134

environment. 135

As an example of local interactions (model A), one may 136

imagine two populations that live together on, say, an island. 137

Individuals are wandering around, looking for food, mates, or 138

territory. An encounter between two individuals may lead to a 139

struggle in which only one of them wins the desired goods and 140

increases its chance to survive and to reproduce. In a zero-sum 141

game of this kind two individuals are chosen at random from 142

the entire community for a duel; the loser dies and the winner 143

produces a single offspring. If one considers a two-species 144

community of size N , where the fraction of one species is 145

x = n/N , the chance for an interspecific duel is 2x(1 − x). In a 146

neutral model without environmental variations all individuals 147

have equal fitness all the time, so the chance to win a duel is 148

always 1/2. Accordingly, the chance of a population to grow 149

or to decrease by one individual after a single elementary event 150

(a duel) is equal, x(1 − x). 151

To present a model with global competition (model B), let 152

us consider a forest. Adult trees spread seeds all around and 153

we assume that the dispersal length is much larger than the 154

size of the forest, so the composition of the seed bank at each 155

location reflects the abundance of the corresponding species in 156

the forest. When an adult tree dies it leaves a gap and one local 157

seed is chosen to capture it. If the model is neutral the chance 158

of each species to recruit the gap is proportional to its relative 159

abundance. Hence, the abundance of x will grow by one tree 160

with probability x(1 − x) [an adult tree from another species 161

has been chosen to die with probability (1 − x) and the focal 162

species won the gap with probability x] and will shrink by one 163

tree with the same probability. 164

Accordingly, when the environment is fixed and the dy- 165

namics is purely neutral, the local competition model (A) and 166

the global competition model (B) are translated to the same 167

stochastic process (the voter model) and lead to the same 168

dynamics. However, this feature is lost when environmental 169

fluctuations do affect the relative fitness of different species, 170

even if the averaged fitness differences vanish. 171

To model environmental stochasticity we begin with a two- 172

species game, and later on we will extend the definition to 173

the general case. Focusing on a specific species with relative 174

abundance x, in model A the chance of an interspecific duel 175

is 2x(1 − x). We will define the fitness of this species (with 176

respect to its enemy) via the chance to win such a duel, 177

Pwin = 1

2
+ γ (t)

4
, (1)
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where γ (t) measures its relative (log) fitness. The focal species178

mean population satisfies (time is measured in generations, N179

elementary events in each generation),180

ẋ = γ x(1 − x), (2)

or ż = γ z, where z ≡ x/(1 − x). Accordingly, if γ is fixed in181

time the focal species abundance grows (when γ is positive) or182

decays (for γ < 0) and the focal species reaches fixation (z >183

1 − 1/N ) or extinction (z < 1/N) on O(ln N ) timescales. Our184

interest here is in a time-averaged neutral model where γ (t)185

has zero mean. In that case ln(z) performs a simple unbiased186

random walk without any stabilizing force.187

In model B the role of environmental variations is not so188

simple. If the fitness affects the chance of recruitment but death189

occurs randomly, the chance of the focal species to increase190

its abundance is equal to the chance that a tree from another191

species dies, 1 − x, times the chance of the focal species to192

win the empty slot, which is defined to be the ratio between193

the fitness of the local species and the average fitness of the194

community,195

xeγ

(1 − x) + xeγ
. (3)

The focal species shrinks if one of its individuals was chosen196

to die (with probability x) and the other species wins the com-197

petition with probability (1 − x)/(1 − x + xeγ ). Accordingly,198

x satisfies199

dx

dt
= x(1 − x)eγ

1 − x + xeγ
− x(1 − x)

1 − x + xeγ

≈ γ x(1 − x) + γ 2

2
x(1 − x)(1/2 − x), (4)

where the last term comes from a second order expansion200

in γ . Unlike model A, here the nonlinear dependence of the201

chance to win on γ leads to a second, O(γ 2) term, that by itself202

tends to stabilize the coexistence point at x = 1/2. Of course203

this term is much smaller than the first, O(γ ) term, so under204

fixed environmental conditions the focal species still shrinks205

or grows exponentially. However, when γ (t) fluctuates around206

zero the O(γ ) term averages out while the O(γ 2) terms add207

up, so (at least when the rate of variations is fast enough) the208

stochasticity tends to stabilize the coexistence point.209

The difference between model A and model B is most210

evident when the environmental fluctuations are extremely211

rapid, e.g., when γ is picked at random after each elementary212

(birth-death) event. Model A reduces, in this case, to its purely213

demographic limit: instead of choosing the winner by a single214

toss of a coin one first picks the weather and then the winner,215

but the end result is a chance of 1/2 to win any elementary216

competition. In contrast, in model B the stabilizing effect of217

the environment reaches its maximum strength in this rapid218

fluctuations limit where theO(γ ) terms cancel each other more219

efficiently.220

The stabilizing effect of environmental variations in models221

with nonlinear fitness dependence (like our model B) was222

pointed out by Chesson and co-workers a while ago [34,35].223

Technically, model B considered here is very close to Chesson-224

Warner lottery game. However, as discussed in [25], the lottery225

game has no demographic noise, so it does not allow for226

extinction events and one cannot analyze the properties of a227

community in which the biodiversity reflects an extinction- 228

speciation equilibrium. 229

III. AN INDIVIDUAL-BASED TWO-TYPE MODEL 230

WITH ENVIRONMENTAL STOCHASTICITY AND 231

ONE-WAY MUTATION 232

As explained above we shall start our analysis, in this 233

section, with a two-species game, and then (in Sec. IV) extend 234

the treatment to the full problem. In these two sections we 235

begin with model A and then consider model B. 236

A. Model A 237

Let us consider a system of N individuals with two species 238

(types), A and B. As in [36] (p. 208) no mutation of B to A is 239

allowed, while an offspring of type A may mutate to become 240

a B type. 241

In each elementary event two individuals are picked at 242

random; the winner reproduces and the loser dies. If a B type 243

wins, the offspring is also a B. If an A wins, the offspring is 244

an A with probability 1 − ν and mutates to be a B-type with 245

probability ν. 246

Accordingly, in a system of N individuals with n A types 247

and N − n B types, the only absorbing state is n = 0. In this 248

section we assume that, very rarely, a new A-type individual 249

arrives (say, as an immigrant) and then the game is played again 250

until the A species goes extinct (this happens before the next 251

immigration event). Our aim is to calculate Pn, the probability 252

to find the system with n A types, conditioned on the existence 253

of A in the system (i.e., not including the periods between 254

extinction and recolonization events). 255

As explained, this process takes place via a series of duels. 256

In case of an interspecific duel A wins with probability Pwin 257

(to be defined below) and B wins with probability 1 − Pwin. 258

The possible outcomes of all kinds of duels are summarized 259

by (here the expressions above the arrows are probabilities, not 260

rates) 261

B+B
1−→ 2B A+A

1−ν−−→ 2A A+A
ν−→ A+B

A+B
1−Pwin−−−→ 2B A+B

Pwin(1−ν)−−−−−→ 2A A+B
νPwin−−→ A + B.

(5)

To fully characterized the process, Pwin should be specified. 262

We define Pwin via 263

Pwin = 1

2
+ sA − sB

4
, (6)

where sA (sB) is the logarithmic fitness of the A (B) type. 264

Without loss of generality we can set sB = 0. Under environ- 265

mental variations sA (hence Pwin) is time dependent, but to 266

keep time-average neutrality its mean has to be zero. Clearly, 267

the main characteristics of such environmental fluctuations are 268

their amplitude and their correlation time. Here we assume a 269

dichotomous (telegraphic) noise such that sA = ±γ , so half of 270

the time Pwin = 1/2 + γ /4 (the plus state of the environment) 271

and half of the time Pwin = 1/2 − γ /4 (the minus state). Both 272

white Gaussian noise and white Poisson noise can be recovered 273

from the dichotomous noise by taking suitable limits [37], so 274

the results obtained here are quite generic. 275
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Time is measured in units of generations, where a generation276

is defined as N elementary duels. After each elementary duel277

the environment switches (from ±γ to ∓γ ) with probability278

1/(Nδ), so the sojourn times of the environment (measured in279

generations) are geometrically distributed with mean δ.280

At this point the model is fully specified. A full list of281

the transition probabilities is given in Appendix B, Eq. (B2).282

Using that, one may write down the corresponding set of283

master equations (B1). In Appendix B we show how to derive,284

from this exact master equation, an effective Fokker-Planck285

equation for P (x); the chance (averaged over time, including286

plus and minus periods) to find the system with n ≡ Nx A-type287

individuals, satisfies288

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′
−{[Gx(1 − x)(1 − 2x) − θx]P (x)}′ = 0. (7)

Here tags are derivatives with respect to x and G ≡ Nδγ 2/2289

is the ratio between the effective strength of the environmental290

stochasticity, g = γ 2δ/2, and 1/N , the strength of the demo-291

graphic noise. The fundamental biodiversity number θ = Nν292

is a measure of the population mutation rate (mutation load per293

generation).294

Solving for P (x) with the appropriate boundary conditions295

(see Appendixes A and B, where we explain this subtle issue),296

one obtains297

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]θ/2

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2)
√

G/(4+G)

, (8)

where C is a normalization factor. To provide a background for298

later discussions, let us consider a few features of the solution299

(8).300

(1) When G → 0 (no environmental stochasticity) we have301

a model with mutations and demographic noise. In that case,302

P (x) obtained from our two-species model is simply303

P (x) = C
(1 − x)θ−1

x
, (9)

i.e., the Fisher log series that converges to e−θx/x when θ �304

1. In this case the two-species model yields the SAD of the305

neutral model, since there is no real difference between the306

two. Every species in the neutral model emerges via mutation307

or speciation and goes extinct because of demographic noise,4 308

so the average over colonization-extinction periods that yields309

P (x) is the same as the average over different species that yields310

the SAD of the neutral model. As we shall see below, when311

environmental stochasticity kicks in, P (x) of the two-species312

model differs from the SAD of the neutral model.313

When θ 	 1 the expression for P (x) in Eq. (9) reduces to314

[x(1 − x)]−1, since in that case the system spends most of its315

time close to the fixation or extinction points in a symmetric5 316

manner.317

(2) For strong environmental stochasticity, i.e., when G �318

1, one may use the approximation
√

G/(G + 4) ≈ 1 − 2/G.319

When this expression is plugged into Eq. (8) and constants are 320

absorbed into the normalization factor one obtains 321

P (x) = C(1 − x)ν/g−1

(
(1 + Gx)(1 − x)

1 + Gx(1 − x)

)θ/2 (1 + Gx)−ν/g

x
.

(10)

When all parameters are kept fixed and x decreases such that 322

Gx 	 1 and θx 	 1 (which implies, of course, also x 	 1), 323

the dynamics is purely demographic and Eq. (10) reduces to 324

P (x) ∼ 1

x
. (11)

On the contrary, in the region where the demographic noise in 325

negligible, Gx � 1, 326

P (x) ∼ (1 − x)ν/g−1

xν/g+1
exp

(
− θx/2

1 + Gx(1 − x)

)
. (12)

(i) When ν > 2g, the exponent in (12) truncates P (x) at 327

xc = 1

N (ν/2 − g)
. (13)

In the large N limit xc 	 1 so (1 − x)ν/g−1 ≈ 1. Accordingly, 328

P (x) looks like 1/x for x 	 1/G, like x−1−ν/g in the narrow 329

region 1/G 	 x 	 1/(θ/2 − G), and decays to negligible 330

values above this point. The intermediate power-law regime 331

disappears when ν > 4g, where P (x) takes the general form 332

of the Fisher log series with an effective mutation rate which 333

is half of the bare mutation rate, plus some modifications due 334

to G in the tail of the distribution. 335

(ii) When ν = 2g the exponential term in Eq. (12) still pro- 336

vides a cutoff, now at xc ∼ 1/
√

G. Since xc is still microscopic 337

in the large N limit, the intermediate power law x−3 is valid in 338

the region 1/G 	 x 	 1/
√

G. 339

(iii) If ν < 2g, the exponential cutoff point becomes N 340

independent, 341

xc = 1 − ν

2g
, (14)

so, 342

P (x) ∼ (1 − x)ν/g−1

xν/g+1
e−ν/2g(1−x). (15)

Below xc, the behavior is determined by the pre-exponential 343

factor. If g < ν < 2g, this factor decays monotonously with x, 344

so one observes two power laws with an Arrhenius truncation 345

above xc. In the region ν < g the prefactor grows with x above 346

x∗ = 1/2 + ν/(2g). When x∗ < xc, i.e., ν < g/2, P (x) admits 347

an observable peak at finite x, as demonstrated in Fig. 1(b). 348

The adequacy of Eq. (8) and the different behaviors of 349

P (x) are demonstrated in Fig. 1. The analytic predictions are 350

shown to fit the outcomes of Monte Carlo simulations and the 351

numerical solutions of the master equation. As expected, when 352

g > ν a peak appears close to x = 1. 353

B. Model B 354

In model B, each elementary step begins with the death 355

of a randomly chosen individual, so death probability is 356

fitness independent. In our one-sided mutation game, with 357
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FIG. 1. P (x), the chance of finding the A-type at relative abundance x, is plotted for a two competing species system with one-sided
mutation, environmental stochasticity, and demographic noise. In both figures N = 1000, ν = 0.01, and the main panels are plotted using a
double logarithmic scale. Results shown include those obtained from a Monte Carlo simulation (green circles), numeric solutions for the steady
state of the master equations (B1)–(B3) (red diamonds), and the analytic prediction of Eq. (8) (black line). In panel (a) the results are depicted
for δ = 0.5 and γ = 0.2, such that ν = g. In panel (b) δ = 1.25 and γ = 0.4 so ν = 0.1g. As discussed in the main text, when ν < g/2 there
is a peak at high values of x. To emphasize this peak we have added an inset where the same results are shown using a linear scale. The fit
between the three curves is quite good.

probability ν the gap is recruited by a B type individual.358

With probability 1 − ν the chance of each species to capture359

the vacancy is proportional to its abundance, weighted by its360

fitness. Accordingly, if the relative logarithmic fitness of A type361

is γ and its fraction is x, its chance to increase its population362

by 1 comes from events where a B individual was chosen to363

die (with probability 1 − x) and no mutation happens, so the364

transition probabilities are 365

Wn→n+1 = (1 − ν)
(1 − x)xeγ

1 − x + xeγ
,

Wn→n−1 = x

(
ν + (1 − ν)

(1 − x)

1 − x + xeγ

)
. (16)

FIG. 2. PmodelB(x), the chance of finding the A type at relative abundance x, is plotted for a system with two competing species with
one-sided mutation, environmental stochasticity, and demographic noise. In both figures N = 1000, ν = 0.005. Results shown include those
obtained from a Monte Carlo simulation (filled circles), numeric solution for the steady state of the master equations, and the analytic prediction
of Eq. (18) (lines with different colors). In panel (a) (plotted using a double logarithmic scale) the results are depicted for large value of δ,
δ = 2, so the outcomes imitate those obtained for model A, in particular the two power laws when γ = 0.2 (green circles) and the peak close to
x = 1 when γ = 0.4 (blue circles). In panel (b) (where the scale we have used is semilogarithmic) γ = 0.4 while δ = 0.4 for the blue circles
and δ = 0.1 for the greens. Since δ is small, the peak at x = 1/2 is pronounced, and it becomes even steeper as δ decreases. In all these graphs
the fits are good, and one can hardly distinguish between the numeric solution for the steady state and the analytic expression (18). Here, and
in all other figures, the marker sizes were chosen to allow one to distinguish between the three data sets, but the actual width of the lines is
smaller. We did not track the standard deviation associated with the outcomes of our Monte Carlo simulations, but the almost perfect agreement
between the lines obtained using three different techniques implies that the corresponding error bars are tiny.
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Under dichotomous environmental stochasticity after each step366

the system switches from ±γ to ∓γ with probability 1/(Nδ).367

Implementing the same method used for model A, one finds368

the corresponding Fokker-Plank equation,369

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′
−{[(Gηx(1 − x)(1 − 2x) − θx]P (x)}′ = 0, (17)

where η ≡ 1 + 1/δ. The only difference between this Fokker-370

Planck equation and the equation for model A [Eq. (7)] is the in-371

nocent looking factor η. However, this may lead to a substantial372

modification of the results. In model A, the deterministic bias373

towards x = 1/2, represented by the Gx(1 − x)(1 − 2x) in the374

convection term, is balanced by the decrease in the diffusion375

rate close to the edges, related to the factor Gx2(1 − x)2 in376

the diffusion term, and the two phenomena cancel each other377

exactly in the steady state [30]. Since η > 1, the attraction378

towards 1/2 is dominant in model B, hence the steady-state379

probability may have a peak at a finite value of x.380

The steady state of model B turns out to be381

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]−1/δ+θ/2

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2)
√

G/(4+G)

= [1 + Gx(1 − x)]1/δPModelA. (18)

Clearly, the extra term has a maximum at x = 1/2 and the peak6 382

becomes more pronounced when δ decreases, as expected.383

Therefore, model B is richer than model A: for δ � 1, P (x)384

in model B may yield the same behaviors described above,385

such as a truncated power law or a peak close to x = 1.386

However, when δ 	 1 the stabilizing force is strong and the387

probability develops a peak close to x = 1/2. These behaviors388

are demonstrated in Fig. 2.389

IV. A MULTISPECIES, TIME-AVERAGED390

NEUTRAL MODEL391

Having solved the problem of a two-species system with392

environmental stochasticity and one-sided mutation, we return393

to the main goal of this paper: the attempt to find the SAD394

of a neutral model with both demographic and environmental395

stochasticity. In this model the system may support many396

species, and each of these species is characterized by its397

abundance n and by its instantaneous fitness.398

Without environmental noise the dynamics of every focal399

species in a neutral system is identical to the dynamics of type400

A in the two-species one-sided mutation model considered in401

the previous section. Accordingly, as demonstrated in the last402

section, in that case the function P (x) of the two-species model403

is proportional, up to a normalization constant, to the SAD404

of the multispecies neutral model [defined also as P (x), but405

now it is the probability that a randomly picked species has406

abundance x]. When the environmental variations change the407

relative fitness of different species this is not the case anymore.408

In this section we develop an effective field theory that allows409

us to map the neutral model to a (slightly modified) two-species410

system. Once this goal is achieved, we can solve for the SAD 411

using the techniques presented above. Again, we begin with a 412

discussion of model A, then we consider model B. 413

A. Model A 414

As before, in each elementary step two individuals are 415

picked randomly for a duel, and the winner is determined 416

with probability that depends on their relative fitness. The 417

offspring takes the species identity of its parent with probability 418

1 − ν and becomes the originator of a new species with 419

probability ν. Unlike the two-species model, here there are 420

no recurrent mutations—an offspring cannot mutate into an 421

existing type (an infinite allele model). As a result, the structure 422

of the community reflects the balance between mutations and 423

extinction events. 424

The environmental noise is again dichotomous: there are 425

two fitness state, ±γ , and the fitness of every species jumps 426

randomly between these two states, such that the sojourn times 427

are distributed geometrically with mean of δ generations. The 428

states of different species are not correlated, and the fitness of 429

an originator of a species is chosen at random upon its birth. 430

Accordingly, in this time-averaged neutral model there are two 431

types of duels: the two randomly picked individuals may have 432

the same fitness (either plus or minus), in which case the chance 433

of each of them to win the duel is 1/2, or they may have 434

different fitnesses, in which case the corresponding chances 435

will be 1/2 ± γ /2. Unlike the two-species model considered 436

in the last section, here two fighting individuals may have the 437

same fitness, so the γ /4 factor above has to be replaced by γ /2 438

to keep the relationship between the environmental fluctuations 439

and the demographic noise fixed. The full specifications of the 440

model, including all the transition probabilities, are provided 441

in Appendix C. 442

Let us consider now the dynamics of a single (focal) species. 443

As opposed to the two-species system considered above, here 444

when an individual of the focal species is chosen for an 445

interspecific duel, the fitness of its rival is not specified uniquely 446

by the focal species fitness. For example, if the focal species 447

is in the plus state, it may compete with either an inferior or 448

an equal individual. Therefore, to analyze the dynamics of the 449

focal species we need an extra parameter f+, the chance that 450

its rival in an interspecific duel will be in the plus state. If f+ 451

is a constant (time, state, and abundance independent—see the 452

discussion below), then the chance of a focal species individual 453

to win a duel, when the focal species is in the plus state, is 454

q = f+
1

2
+ (1 − f+)

(
1

2
+ γ

2

)
= 1

2
+ γ

2
(1 − f+). (19)

When f+ = 1/2 the dynamics reduces to the two-species 455

model considered above. 456

The introduction of the constant f+ allows us to implement 457

the method presented in the last section to the dynamics 458

of a focal species in the time-averaged neutral model. In 459

Appendix C we show that, in this case, P (x) of an arbitrary 460

focal species (and hence the SAD of the model) satisfies 461

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′ − {[Gx(1 − x)(1 − 2x)

+Nγx(1 − x)(1 − 2f+) − θx]P }′ = 0. (20)
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The solution of this equation is462

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]θ/2

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2−ζ )
√

G/(4+G)

, (21)

where463

ζ ≡ − 2

γ δ
(1 − 2f+).

In general f+ may depend on the abundance of the focal464

species. However, when the abundance of each species is only465

a tiny fraction of N (which is the case when the system supports466

many species, see below) one may expect it to be independent467

of the details of the state of the system. Our numerics shows that468

taking f+ as a constant becomes a very good approximation469

when N is large. In fact, f+ turns out to be independent of the470

abundance and the state (plus/minus) of the focal species, but471

it fluctuates in time. Since the transition rates are linear in f+,472

their average depends only on its mean, f +.473

Given that, we can obtain a closed form for the species474

abundance distribution by calculating f + as a function of the475

system parameters. If all species are “microscopic” (n 	 N )476

f + has to be, more or less, the fraction of individuals in the477

plus state, so it satisfies the self-consistency equation478

f + = 1

x

∫ 1

0
xP +(x) dx. (22)

P +(x) [P −(x)] is the probability that a randomly picked479

species has abundance x and its fitness is +γ [−γ ]. The mean480

abundance of a species, x ≡ ∫ 1
0 x[P +(x) + P −(x)], is related481

to the total number of species (species richness) in the system,482

SR, by x = 1/SR.483

This, plus the relationship we have derived from the master484

equations in Appendix C [Eq. (C3)],485

γ δ

2
[x(1 − x)P ]′ = P −(x) − P +(x), (23)

leads, via integration by parts, to486

ζ = − 2

γ δ
(1 − 2f +) = 1

x

∫ 1

0
x(1 − x)P (x) = 1 − x2

x
.

(24)

Equations (21) and (24) provide a closed form for the487

species abundance distribution of the neutral model: the nor-488

malization constant C cancels out in (24), so one may use489

(24) to determine ζ which, in turn, specifies uniquely P (x).490

Moreover, if P (x) decays faster than x−2, the quantity x2/x491

tends to zero as N → ∞, so asymptotically492

ζ = − 2

γ δ
(1 − 2f +) → 1. (25)

The same result emerges from a simple argument about the493

dynamics of f+: when all the species are microscopic, ḟ+ =494

2γf+(1 − f+) − f+/δ + (1 − f+)/δ, so (when γ δ 	 1) the495

steady state is f + ≈ 1/2 + γ δ/4, in agreement with (25).496

Given that, one may easily recognize the qualitative features 497

of our main result, Eq. (21). As in the two-species case, when 498

all other parameters are kept fixed and G → 0, the Fisher log- 499

series distribution is recovered. When G is large (21) reduces 500

to 501

P (x) = C

x(1 − x)

[
(1 − x)

(
1
G

+ x
)

1 + Gx(1 − x)

]θ/2[(
1
G

+ x
)

1 − x

]−ζ−ν/g

.

(26)

There is, again, a demographic regime: as long as Gx 	 1 502

and θx 	 1, P (x) ∼ 1/x, as in Eq. (11) above. When Gx � 1 503

one obtains 504

P (x) ∼ (1 − x)ν/g+ζ−1

xν/g+ζ+1
exp

(
− θx/2

1 + Gx(1 − x)

)
. (27)

This expression is very similar to (12), and the only mod- 505

ification is the replacement of ν/g by ν/g + ζ in the pre- 506

exponential factor. This implies that the general analysis 507

presented in the discussion of the two-species case still holds: 508

for ν > 2g the exponential truncation starts above xc which 509

is O(1/N) while for ν < 2g, xc is O(1). The only qualitative 510

difference between the multispecies and the two-species case 511

appears in the ν < g/2 regime, where the pre-exponential 512

function grows above x∗ = 1/2 + ν/(2g) + ζ/2. One may see 513

a peak at finite value of x only if x∗ < xc, a condition that 514

translates to 515

ν <
g(1 − ζ )

2
. (28)

Therefore, when N → ∞ and ζ → 1 there is no peak in the 516

species abundance distribution [see Fig. 3(b), in comparison 517

with Fig. 1(a)]. Since the decay is faster than 1/x2, the 518

assumption ζ → 1 is self-consistent. 519

In parallel with Fig. 1, Fig. 3 demonstrates the ability of 520

Eq. (21) to fit both the numerical solution of the master equation 521

and the outcomes of Monte Carlo (MC) simulations. Note 522

that, unlike the last section, here the agreement between the 523

MC simulations and the numerics of the master equations is 524

nontrivial, since the master equations were built for a single 525

species, assuming the ability to use an effective medium theory 526

with one parameter, f+. 527

B. Model B 528

Now let us present the analysis of the multispecies version 529

of model B presented above: a community with time-averaged 530

neutral dynamics, in which the competition is global and the 531

dependence of the transition rates on the fitness is nonlinear. 532

As before, we would like to reduce our analysis to a focal 533

species and to encapsulate the effect of all other individuals by 534

their average fitness A, defined as 535

A = f+e2γ + (1 − f+), (29)

where, as before, f+ measures the fraction (of all individuals 536

that do not belong to the focal species) who are in the plus state. 537

In parallel to our analysis of model A, we have multiplied the 538

value of γ by a factor of 2, with respect to the two-species 539

game, in order to keep the overall strength of environmental 540

stochasticity g at γ 2δ/2. as we shall see below, here also the 541

mean value of f+ approaches 1/2 + γ δ/4. 542
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FIG. 3. The species abundance distribution, P (x) as a function of x, for a time-averaged neutral model (model A) with environmental
stochasticity and demographic noise. In both figures N = 104 and ν = 0.01, and the results are plotted using a double logarithmic scale. The
outcomes of a Monte Carlo simulation (green circles), numeric solution for the steady state of the master equations (see Appendix C) (red
diamonds) and the analytic predictions of Eq. (21) (black line) are compared, and the fit is very good. In panel (a) the results are depicted for
δ = 0.5 and γ = 0.5, such that ν/g = 0.16. In panel (b) δ = 0.25 and γ = 0.2 so ν/g = 2. In both panels the small x behavior is P ∼ 1/x, but
in panel (a) this regime is very narrow since it requires x 	 1/G = 1.6 × 10−3. The Gx � 1 behavior obeys a power law in panel (a), where
the environmental stochasticity dominates (ν/g < 1/2) and is dominated by an exponential decay in panel (b), where the mutation losses are
stronger. In these parameters, N is not big enough to justify the use of the asymptotic value ζ = 1. Instead, the value of f + used in Eq. (21)
was obtained by measuring the long-term average fraction of individuals in the plus state through the MC simulations.

Naively, one would like to define new transition probabili-543

ties for the focal species using A. Given the value of γ , these544

transition probabilities are545

Wn→n+1 = (1 − ν)
(1 − x)xe2γ

(1 − x)A + xe2γ
,

Wn→n−1 = x

(
ν + (1 − ν)

(1 − x)A

(1 − x)A + xe2γ

)
. (30)

From this point one may continue, as in model A, to derive the546

two coupled master equations and the corresponding Fokker-547

Planck equations, from which an appropriate expression for548

P (x) may be extracted.549

When we did that, we discovered that the emerging for-550

mula for P (x) does not fit the outcome of our Monte Carlo551

simulations. It turned out that the origin of the problem is the552

f+ fluctuations: since species flip continuously from the plus553

to the minus state and vice versa, the number of species in554

the plus state varies binomially. Accordingly, f+, which is the555

number of species in the plus state times the average abundance556

of such a species, fluctuates such that f+ = f + + δf+, where557

δf+ is a random number taken, more or less, from a zero-mean558

Gaussian distribution with width σ ≡ √
Var(f+). In general559

σ → 0 as N → ∞, but to fit the results of our simulations560

with finite N we had to use this parameter. In model A this561

variance did not play any role, since the transition probabilities562

are linear in f+ so the average Wn→n±1 depends only of f +. In563

contrast, here the nonlinearity of the W ’s compels one to take564

f+ fluctuations into account.565

Accordingly, we have implemented the procedure described566

above, replacing each of the W ’s of Eq. (30) by
∼
W =567

(1/2)W (f + + σ ) + (1/2)W (f + − σ ). It turns out that this is568

a decent approximation and there is no need to average the W ’s 569

using the exact f+ distribution. Doing that, we have expanded 570

these average transition probabilities to a second order inγ , and 571

used the approximated W ’s to build the corresponding master 572

and Fokker-Planck equations, in parallel with Eq. (C2). After 573

long and tedious calculations, the effective, one dimensional 574

Fokker-Planck equation turns out to be of the same general 575

form of (20), 576

{x(1 − x)[1 + Gx(1 − x)]P (x)}′′ − {[Gx(1 − x)(1 − 2x)

+ x(1 − x)N (γ (1 − 2f +) + γ 2{1 − 2x − 4(1 − x)

× [f +(1 − f +) − σ 2]}) − θx]P }′ = 0. (31)

Solving this equation for P (x) one obtains 577

P (x) = C
(1 − x)θ

x(1 − x)[1 + Gx(1 − x)]θ/2−1/δ−κ

×
⎡
⎣1 − (1 − 2x)

√
G

4+G

1 + (1 − 2x)
√

G
4+G

⎤
⎦

(θ/2−ζ−1/δ+κ)
√

G/(4+G)

, (32)

where 578

κ = 1

δ
[1 − 4f +(1 − f +) + 4σ 2]. (33)

Comparing (32) with Eq. (21) one realizes that in the 579

environmental-noise-controlled regime, Gx(1 − x) � 1, 580

PmodelB(x) = (1 − x)2/δx2κPmodelA(x), (34)

since the value of κ is typically small, while 1/δ is a large 581

factor in the interesting regime of strong stabilizing effect, the 582

species richness of model B is typically larger than the species 583
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FIG. 4. The SAD, P (x) vs x, for model B. In both figures N = 105 and ν = 0.001, and the results are plotted using a double logarithmic
scale. The outcomes of a Monte Carlo simulation (blue circles), numeric solution for the steady state of the master equations (red line), and
the analytic predictions of Eq. (32) (yellow line) are compared. In panel (a) the results are depicted for δ = 0.5 and γ = √

0.025, such that
ν/g = 0.16. In panel (b) δ = 0.1 and γ = 0.05 so ν/g = 8. The values of f+ and σ were taken from the Monte Carlo simulations.

richness of model A for the same set of parameters. When δ is584

large model A and model B have similar behavior and, if G > θ585

one expects that the SAD will be much wider than the Fisher586

log series; this type of behavior was observed numerically in587

[38].588

In the corresponding two-species model the stabilizing589

effect of the noise increases the chance of rare species to590

grow and of common species to shrink, thus stabilizing the591

x = 1/2 state. Here we see that the same stabilizing mechanism592

causes an increase in the species richness, i.e., it decreases593

the mean abundance of a single species. Because f+ > 1/2,594

in the multispecies model the mean fitness of a focal species595

is slightly smaller than the mean fitness of the community,596

and this effect almost cancels the noise-induced growth of597

rare species. Accordingly, the main impact of the stabilizing598

mechanism is to limit the growth of common species.599

The expression (32) depends on the parameters f + and σ 2.600

When N → ∞, these two parameters converge to 1/2 + γ δ/2601

and zero, correspondingly. For finite N the situation is slightly602

more complicated. While in model A Eqs. (21) for P (x) and603

(24) for ζ (that depends on f +) provide a closed form, here604

another equation has to be used in order to determine σ 2 in a605

self-consistent manner.606

To do that, we begin with the calculation of the species607

richness (SR). As we show in Appendix D, the SR distribution608

is quite narrow with a peak at 1/x. Accordingly, we neglect609

temporal and system-to-system fluctuations in the species rich-610

ness and approximate it by its peak value. Neglecting similar611

binomial fluctuations we assume that SR/2 of the species are612

in the plus state and SR/2 in the minus state. The chance to find613

f+ at a certain value φ is thus the chance that the abundance614

of half of the species, which are in the plus state, sums up to φ615

while the sum of the abundances of the other half (who are in616

the minus state) is 1 − φ. Now we make another approximation617

and assume that these two distributions, for the sum over the618

plus species and the minus species, are identical, so σ 2 is not619

affected by the difference between f + and 1/2. Using the620

central limit theorem one has 621

P (f+ = φ) = C1 exp

(
− (φ − x SR/2)2

SR Var(x)

)

× exp

(
− (1 − φ − x SR/2)2

SR Var(x)

)

= C1 exp

(
− (φ − 1/2)2

Var(x)/x

)

× exp

(
− (1 − φ − 1/2)2

Var(x)/x

)

= C2 exp

(
−2(φ − 1/2)2

Var(x)/x

)
, (35)

where C1 and C2 are normalization factors. As expected, 622

Eq. (35) suggests a slightly wrong value, 1/2, for f +. Nev- 623

ertheless, it captured the leading contribution to σ 2, 624

σ 2 ≡ Var(f+) = Var(x)

4x
. (36)

Equation (36) for σ 2 together with Eq. (32) for the distri- 625

bution and Eq. (24) for f +, provide a closed form from which 626

P (x) may be calculated iteratively by extracting x and Var(x) 627

from the distribution, plugging it in the expressions for f + 628

and σ 2 and iterating the process to convergence. This process 629

allows us to fit the data in Fig. 4. 630

There is, of course, a numerical alternative to this procedure: 631

assuming a distribution for P±(x) one may pick numbers 632

from it until the sum reaches 1, and calculate f+. Iterating 633

this for many times, a direct estimation of the mean and the 634

variance of f+ is obtained. We have verified our analytic 635

approximation using this procedure, and the deviations (for 636

the system parameters considered here) are smaller than 10%. 637

002400-9



XL10358E PRE March 27, 2018 18:42

MATAN DANINO AND NADAV M. SHNERB PHYSICAL REVIEW E 00, 002400 (2018)

V. DISCUSSION638

The first neutral model, the neutral theory of molecular639

evolution, was suggested a few decades ago by Kimura [1].640

By incorporating spatial effects (mainland-island dynamics),641

Hubbell [39] established the neutral model of biodiversity and642

biogeography. In both theories the diversity of a community643

reflects the balance between stochastic extinction and the644

emergence of new types via mutation, speciation, or (on a local645

community in Hubbell’s model) migration. The reproduction646

rate of all individuals is assumed to be equal at any time and the647

only driver of abundance fluctuations is demographic noise.648

In the immense body of literature published so far, neutral649

models are used in three distinct contexts: first, they serve650

as ultimate null models against which tests for selection or651

niche-based dynamics can be applied [10,40] (though see [41]).652

Second, these models describe the dynamics of all kinds of653

mutations and phenotypic variations that does not affect fitness654

(e.g., synonymous mutations). Third, even in systems like655

tropical trees or coral reefs one may argue that the very different656

species play, more or less, a neutral game, since the inferior657

species are already extinct, a mechanism known as emergent658

neutrality [31,42,43].659

In this paper we have considered the simplest (and most660

important) neutral theory, the well-mixed model of Kimura661

which (without environmental noise) satisfies Ewens’ sam-662

pling formula [44]. Under environmental variations that in-663

dependently affect the relative fitness of species, such that all664

species still have the same time-average fitness, we provided665

here the average (over histories and states of the environment)666

SAD.667

A remark about nomenclature should be added. Some will668

argue that our model does not deserve the title “neutral” since,669

for them, the concept of neutrality implies that all species670

are demographically equivalent at every instant of time. For671

example, in [45] the same phenomenon discussed here were672

considered as part of a non-neutral model with temporal niche673

differentiation. However, it is clear that demographic equiv-674

alence is a matter of scale. Demographic and environmental675

stochasticity are the two extremes of the same phenomenon,676

namely, the stochastic effects of the environment on the fitness677

of a population: demographic noise is uncorrelated between678

different individuals, while the “environmental stochasticity”679

are those random variations that coherently affect an entire pop-680

ulation. For us, neutrality means symmetry between species,681

i.e., it corresponds to the assumption that the time-average682

fitness of all species is the same and that the dynamics is driven683

by (various kinds of) fluctuations.684

Previous works that dealt with this problems were focused685

on the dynamics of a single species with fluctuating growth686

rate, such that the time-averaged growth rate is (−ν) [31,32].687

These works differ from the analysis presented here in two688

aspects: First, in our model the growth rate (when a species689

is favored by the environment) decays with its fraction x, and690

second (and more important) by considering the increase in691

the number of individuals in the plus state, which manifests692

itself in the value of f+ > 1/2. This second effect leads to693

an increased pressure on a focal species, hence the power-law694

decay [Eq. (27)] at large values of x is characterized by an695

exponent which is larger than the exponent predicted for a696

two-species game. In [30] the effect of the mutations on the 697

growth rate of an existing species was neglected, and again the 698

extra pressure due to f+ > 1/2 was not taken into account. 699

In some circumstances, environmental stochasticity may 700

act as a stabilizer of the community dynamics, increasing 701

the chance of a new mutant to invade and decreasing the 702

chance of a dominant species to grow. This phenomenon 703

was pointed out by Chesson and co-workers [34,46] and is 704

known in the ecological literature as the storage effect. The 705

storage effect stabilizes a coexistence state when the fitness 706

affects recruitment but death occurs at random. This is the 707

situation in our model B, which is very similar to the lottery 708

game considered by Chesson and Warner [34]; see a detailed 709

discussion in [25]. On the other hand, in model A fitness affects 710

both birth and death in an anticorrelated manner. As a result 711

there is no storage effect stabilization in that case. 712

Demographic noise and mutations were not taken into 713

account in the works of [34,46], so their models did not allow 714

for extinction (i.e., for an absorbing state) and of course one 715

cannot use them to study extinction-mutation equilibrium. 716

Moreover, for neutral dynamics without demographic noise 717

γ cancels out from the steady state equations so the SAD 718

depends only on δ [25,46]: this happens because there is no 719

other scale in the problem, and leads to the paradoxical result 720

that the steady state SAD is independent of the amplitude of 721

environmental variations. When demographic stochasticity is 722

taken into account, as we did here, the parameter G = Ng 723

sets the scale of environmental noise in terms of demographic 724

stochasticity, and allows for a smooth transition between the 725

purely demographic and the environmental models. 726

In the original neutral model, with pure demographic noise 727

and a Fisher log series SAD, P (x) decays like 1/x for x 	 728

1/(Nν) and the decay is exponential above this point. In model 729

A, the main effect of environmental stochasticity is to allow for 730

species with higher abundance; if environmental variations are 731

strong enough the exponential cutoff is replaced by a power- 732

law decay as in Eq. (27). This implies that in such a system 733

both the number and the abundance of “hyperdominant” [8,47] 734

species is larger, and the overall species richness is smaller, 735

than in a system without environmental variations and the same 736

speciation rate. Recently, the heterogeneity of SADs obtained 737

in the marine biosphere was shown to be greater than expected 738

by a purely demographic neutral model [48]—this may be an 739

indication for the effect of environmental variations. As species 740

richness reflects a speciation-extinction balance, this observa- 741

tion is consistent with the results of previous works, where we 742

showed that the time to absorption shrinks when environmental 743

stochasticity turned on and there is no mechanism that allows 744

for noise induced stabilization [14,26,28]. 745

The response of model B systems to environmental fluctua- 746

tions is more intricate. In a model without mutations and with- 747

out demographic noise, the single species SAD peaks at 1/SR 748

[26], but this implies that such a system is vulnerable to the 749

invasion of a new species. The remnant of this behavior is the 750

Beta-distribution-like function that multiplies P (x) of model 751

A to yield the SAD of model B in Eq. (34). When δ is large, 752

model A and B behave similarly. However when δ is small and 753

the stabilizing effect is strong, the SAD has a strong cutoff at 754

x ∼ δ/2 and the species richness increases substantially with 755

respect to model A with the same parameters. Moreover, when 756
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δ < 2/θ the species richness of model B will be even larger757

than the SR of the purely demographic neutral model that has758

a cutoff at x = 1/θ , as already demonstrated numerically in759

Fig. 5 of [26].760

There are some limitations to our analysis: first, we assumed761

that the size of the community N is large, and that the number762

of species in the steady state is much larger than 2 (otherwise763

the mean-field approach failed, in particular the neglect of the764

time dependence of f+ becomes problematic). Moreover, our765

approximations fail when δ becomes extremely large (f+ →766

1), since in such a case the system reduces to a neutral model767

for all the plus state species, while the minus species simply go768

extinct. These limitations, of course, have nothing to do with769

the practical applications of the neutral model to empirical770

dynamics like those considered in [17,21]. We believe that771

the theory presented here, when applied to experiments and772

field data in population genetics and community ecology,773

may suggest many insights into the processes that govern the7 774

composition of populations and communities.775
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APPENDIX A: FROM MASTER EQUATION TO779

FOKKER-PLANCK EQUATION: CONTINUUM780

APPROXIMATION AND BOUNDARY CONDITIONS781

The Fokker-Planck equations studied through this paper are782

obtained as a continuum approximation of an exact master783

equation. The justification for this procedure, and its limita-784

tions, were discussed in detail in [49]; in this appendix we785

provide a few comments that illustrate the method used here,786

with a particular emphasis on the boundary conditions. We787

stick to a simple system that allows us to demonstrate the788

problems and their solutions while keeping the algebra and789

calculus relatively straightforward.790

To begin, let us write down the master equation for a generic791

system with nearest neighbors transitions where the number792

of individuals is between 1 and N . If Wn±1→n and Wn→n793

are the probabilities to jump into the state with n individuals794

during one elementary step (after each elementary step, time795

is incremented by 1/N), the master equation takes the form796

P
t+1/N

1 = W1→1P
t
1 + W2→1P

t
2 ,

P t+1/N
n = Wn→nP

t
n + Wn+1→nP

t
n+1 + Wn−1→nP

t
n−1,

1 < n < N, (A1)

P
t+1/N

N = WN→NP t
N + WN−1→NP t

N−1.

In the steady state, P
t+1/N
n = P t

n for all n’s. In such a case797

the set of equations (A1) appears to provide N equations798

for the N unknown variables Pn. However, conservation of799

probability implies that the corresponding Markov matrix is800

singular, i.e., it admits a nontrivial eigenstate with zero eigen-801

value. The missing constraint is supplied by the normalization802

condition
∑

Pn = 1, and with this condition the solution is803

fully specified. This example may be generalized to include804

environmental noise, long-range hopping, and so on.805

Now let us discuss the transition to the continuum. The 806

simplest way to make this approximation is to consider both P 807

and W as functions of x = n/N , and to expand quantities like 808

Pn+1 → P (x + 1/N) to second order in 1/N . If it is possible 809

to use this procedure for any value of n (and this is not the 810

case; see below) the equations for P1 and PN , which are not 811

in the general form of all other equations, supply a no-flux 812

(Robin) boundary condition at x = 0 and x = 1. As before, 813

although one obtains a second order differential equation with 814

two boundary conditions, the steady state is not specified 815

completely since the satisfaction of one boundary condition 816

leads automatically to the satisfaction of the other one. The 817

extra constraint is provided by normalization. 818

To examine the transition to continuum more closely, let us 819

specify the transition probabilities. As an example we take a 820

two-species neutral model with pure demographic noise and 821

“reflecting” boundary conditions. At each step one individual 822

is chosen at random to die and is replaced by an offspring of 823

another, randomly chosen, individual. However, a singleton 824

(the last individual that belongs to a certain species) cannot 825

die. The corresponding transition probabilities are 826

Wn−1→n = (n − 1)(N − n + 1)

N (N − 1)
, 2 � n � N − 1,

Wn+1→n = (n + 1)(N − n − 1)

N (N − 1)
, 1 � n � N − 2,

(A2)

Wn→n =
(

1 − 2n(N − n)

N (N − 1)

)
, 2 � n � N − 2,

W1→1 = (1 − W1→2), WN−1→N−1 = (1 − WN−1→N−2).

Interestingly, for this model the steady state of the master 827

equation (A1) has a simple form, 828

Pn = A

n(N − n)
, (A3)

that satisfies both the master equation and the boundary 829

condition. A is determined by the normalization condition. 830

Plugging the transition probabilities in Eq. (A2) into 831

Eq. (A1), the continuum equation is obtained by the set 832

of replacements n = xN , Pn → P (x), and Pn±1 → P (x) ± 833

P ′(x)/N + P ′′(x)/2N2. The middle equation of (A1) is trans- 834

lated into 835

dP (x,t)

dt
= 1

N2

∂2

∂x2
[x(1 − x)P (x)], (A4)

and the steady state solution satisfies Ṗ = 0, namely, 836

1

N2

∂2

∂x2
[x(1 − x)P (x)] = 0. (A5)

The steady state solution of Eq. (A4) has the general form 837

P (x) = A + Bx

x(1 − x)
. (A6)

As explained above, one of the free constants A and B should 838

be determined by (one of) the boundary conditions, while 839
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the other allows for normalization. Comparing (A6) and (A3)840

one realizes that B = 0 should be the correct answer, but the841

derivation of this result from the boundary conditions of the842

continuum differential equation is not trivial.843

The problem (that has already been discussed in [49])844

is that the continuum approximation itself may break close845

to x = 0 and x = 1. For example, in our case P1 ≈ 2P2.846

Deriving the boundary condition from a continuum approxima-847

tion, P (2/N ) = P (1/N ) + P ′(1/N )/N , one finds P ′(1/N) =848

NP (1/N )/2, but this is incompatible with B = 0 in Eq. (A6)849

[B = 0 implies P ′(1/N) = NP (1/N ), without the factor 2].850

This happens because the derivation of the boundary condition851

assumes that Pn is smooth so the first derivative may be852

extracted from the difference between P1 and P2, but since853

the actual difference is a factor of 2, the approximation fails854

and supplies the wrong boundary condition.855

A way to solve this problem is to define another vari-856

able that will be smooth at the boundaries. For example,857

the quantity Y = x(1 − x)P undergoes a simple diffusion858

process so Eq. (A4) implies that at equilibrium Y = A + Bx,859

hence Y ′(x) = B. The boundary condition is translated to860

Y (1/N ) = Y (2/N ), i.e., Y ′(1/N) = 0, and this implies B = 0861

as requested. However, we are not familiar with a method that862

will allow us to produce a corresponding variable in more863

complicated scenarios.864

The generic method, suggested in [49], is to solve the865

difference (master) equation exactly at the vicinity of the866

boundary, and then to match this expression to the solution867

of the differential (Fokker-Planck) equation in the bulk using868

the asymptotic matching technique. However, for the problems869

at hand this is a very complicated procedure and we have tried870

to avoid it.871

Returning to the steady state equation (A5), one notices 872

that the constant B is related to the first integration, i.e., 873

[x(1 − x)P (x)]′/N2 = B, so taking B = 0 implies that after 874

the first integration the remaining equation is still homogenous. 875

This is not an incident: it happens since the original problem 8876

satisfies detailed balance: PnWn→n+1 = Pn+1Wn+1→n, i.e., the 877

probability flux between each pair of neighboring states is zero. 878

The detailed balance condition must hold in the steady 879

state of Markov chains, by induction from P1. Accordingly, in 880

any one-dimensional Fokker-Planck equation with the general 881

form [A(x)P (x)]′′ + [B(x)P (x)]′ = 0 and reflecting boundary 882

conditions one should omit the first integration constant. In the 883

next appendixes we consider systems that may, in principle, 884

allow for loops, but we map them to a one-dimensional system; 885

so as long as our approximation holds, the detailed balance 886

condition must be satisfied. As N increases this approximation 887

becomes better and better, since the relative width of the bound- 888

ary zone approaches zero. Accordingly, through this paper we 889

implement this detailed balance approximation (namely, we 890

drop the first integration constant). The fits of our results to the 891

numerical solutions of the master equations indicate that this 892

is indeed a decent approximation. 893

APPENDIX B: FOKKER-PLANCK EQUATION FOR THE 894

TWO-SPECIES MODEL WITH ONE-WAY MUTATIONS 895

In this appendix we derive the effective one-dimensional 896

Fokker-Planck equation for a model with two species (types) A 897

andB, with both demographic and environmental stochasticity, 898

and with one-sided mutations (an offspring of A may mutate 899

into B, but an offspring of B is always a B), as described in 900

Sec. III of the main text. 901

To begin, let us introduce two quantities, P t
n,+, the chance of finding the system with n A-type individuals in the (+γ ) state 902

at time t , and P t
n,−, the chance of finding the system in the (−γ ) state with n A-type individuals. The time evolution (time is 903

incremented by 1/N after each elementary step) of Pn,± is governed by the two coupled master equations: 904

P
t+1/N
n,+ = P t

n+1,+W++
n+1→n + P t

n−1,+W++
n−1→n + P t

n,+W++
n→n + P t

n−1,−W−+
n−1→n + P t

n+1,−W−+
n+1→n + P t

n,−W−+
n→n,

P
t+1/N
n,− = P t

n+1,−W−−
n+1→n + P t

n−1,−W−−
n−1→n + P t

n,−W−−
n→n + P t

n−1,+W+−
n−1→n + P t

n+1,+W+−
n+1→n + P t

n,+W+−
n→n, (B1)

where W++
n−1→n, for example, is the probability to increase the A-type population by 1 (from n − 1 to n individuals) while staying in 905

the plus environment, and W+−
n−1→n is the chance that the environment switches from plus to minus and then the A-type population 906

grows. 907

If the abundance of species A is n, the chance of an interspecific duel for two randomly picked individuals is Fn = 2n(N − 908

n)/N2 when N � 1. Using this notation we can write the transition probabilities as 909

W++
n+1→n =

(
1 − 1

δN

)[
(1 − ν)Fn+1

(
1

2
− γ

4

)
+ ν

n + 1

N

]
, W++

n−1→n =
(

1 − 1

δN

)[
(1 − ν)Fn−1

(
1

2
+ γ

4

)]
,

W−−
n+1→n =

(
1 − 1

δN

)[
(1 − ν)Fn+1

(
1

2
+ γ

4

)
+ ν

n + 1

N

]
, W−−

n−1→n =
(

1 − 1

δN

)[
(1 − ν)Fn−1

(
1

2
− γ

4

)]
,

W−+
n+1→n = 1

δN

[
(1 − ν)Fn+1

(
1

2
− γ

4

)
+ ν

n + 1

N

]
, W−+

n−1→n = 1

δN

[
(1 − ν)Fn−1

(
1

2
+ γ

4

)]
, (B2)

W+−
n+1→n = 1

δN

[
(1 − ν)Fn+1

(
1

2
+ γ

4

)
+ ν

n + 1

N

]
, W+−

n−1→n = 1

δN

[
(1 − ν)Fn−1

(
1

2
− γ

4

)]
,

W++
n→n = W−−

n→n =
(

1 − 1

δN

)[
(1 − ν)(1 − Fn) + ν

(
1 − n

N

)]
, W+−

n→n = W−+
n→n = 1

δN

[
(1 − ν)(1 − Fn) + ν

(
1 − n

N

)]
.
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As explained, our system admits a single absorbing state at n = 0 and the dynamics inevitably leads to the extinction of the A910

species, so we have to assume that, very rarely (on timescales that are much larger than the extinction time) a new A individual911

arrives and the game is played over and over again. If our interest is in the chance of A to have abundance n conditioned on its912

existence in the system, we can merge together all the colonization-extinction periods. Colonizations are random in time, so the913

chance of a colonization during each state period is 1/2. This is equivalent to the use of the master equation (B1) only for n � 2,914

while for n = 1 the boundary equations are915

P
t+1/N

1,+ = P t
2,+W++

2→1 + P t
2,−W−+

2→1 + P t
1,+W++

1→1 + P t
1,−W−+

1→1 + 1
2 ([W++

1→0 + W+−
1→0]P t

1,+ + [W−−
1→0 + W−+

1→0]P t
1,−),

P
t+1/N

1,− = P t
2,−W−−

2→1 + P t
2,+W+−

2→1 + P t
1,−W−−

1→1 + P t
1,+W+−

1→1 + 1
2 ([W++

1→0 + W+−
1→0]P t

1,+ + [W−−
1→0 + W−+

1→0]P t
1,−). (B3)

Equations (B1)–(B3) define a linear equation916

P t+1/N = MP t , (B4)

where P t is a 2N vector (Pi = Pn=i,+ for i � N and Pn=i−N,− for N < i � 2N ) and M is a 2N × 2N Markov matrix. The917

steady state is the eigenvector of M with the (highest) eigenvalue λ = 1. To obtain a solution for this steady state given a set of918

parameters that determine the elements of M we have solved numerically for this eigenvalue. As discussed in Appendix A, the919

overall scale of the steady state Pn’s is determined by the normalization condition.920

Now we would like to develop a Fokker-Planck differential equation for this steady state distribution. Defining P +
n (P −

n ) as the921

chances to find the system with n individuals in the plus (minus) state in a period between colonization and extinction, Eq. (B3)922

takes the form923

P +
n = P +

n+1W
++
n+1→n + P +

n−1W
++
n−1→n + P +

n W++
n→n + P −

n−1W
−+
n−1→n + P −

n+1W
−+
n+1→n + P −

n W−+
n→n,

P −
n = P −

n+1W
−−
n+1→n + P −

n−1W
−−
n−1→n + P −

n W−−
n→n + P +

n−1W
+−
n−1→n + P +

n+1W
+−
n+1→n + P +

n W+−
n→n. (B5)

Plugging (B2) into (B5) and using the definition q ≡ 1/2 + γ /4 (this is the parameter qA, introduced in Sec. III, in the plus924

state):925

P +
n =

(
1 − 1

Nδ

){
(1 − ν)(qFn−1P

+
n−1 + (1 − q)Fn+1P

+
n+1 + (1 − Fn)P +

n ) + ν

(
n + 1

N
P +

n+1 + N − n

N
P +

n

)}

+ 1

Nδ

{
(1 − ν)((1 − q)Fn−1P

−
n−1 + qFn+1P

−
n+1 + (1 − Fn)P −

n ) + ν

(
n + 1

N
P −

n+1 + N − n

N
P −

n

)}
,

P −
n =

(
1 − 1

Nδ

){
(1 − ν)((1 − q)Fn−1P

−
n−1 + qFn+1P

−
n+1 + (1 − Fn)P −

n ) + ν

(
n + 1

N
P −

n+1 + N − n

N
P −

n

)}

+ 1

Nδ

{
(1 − ν)(qFn−1P

+
n−1 + (1 − q)Fn+1P

+
n+1 + (1 − Fn)P +

n ) + ν

(
n + 1

N
P +

n+1 + N − n

N
P +

n

)}
. (B6)

These two coupled difference equations for P + and P − may be translated to another pair of coupled difference equations for926

their sum (which is the chance to be at n, no matter what the weather) and their difference,927

Pn ≡ P +
n + P −

n , n ≡ P +
n − P −

n . (B7)

Defining x ≡ n/N one may switch to the continuum limit, with Pn → P (x) and Pn±1 → P (x ± 1/N). Expanding to second928

order in 1/N , the emerging couple of steady state differential equations is929

(1 − ν)

{
1

N
[x(1 − x)]′′ − γ [x(1 − x)P ]′

}
+ ν[x]′ = 2

δ
(
1 − 2

δN

) ,

(1 − ν)

{
1

N
[x(1 − x)P ]′′ − γ [x(1 − x)]′

}
+ ν[xP ]′ = 0. (B8)

In what follows (and in the main text) we neglect the930

difference between 1 − ν and 1, since in the relevant parameter931

regime ν is very small compared to 1 (otherwise one may932

replace, from now on, every ν by ν̃ ≡ ν/(1 − ν). In a very933

similar process where the rate of duels is 1 and the rate of934

mutations is ν, this (1 − ν) factor disappears). Moreover, since935

we are interested in the large N , fixed δ limit, 2/(δN) 	 1.936

Dominant balance analysis (see discussion below) reveals 937

that, for reasonably large N , the first and the third term in the 938

upper equation of (B8) are negligible. Accordingly, 939

 = γ δ

2
[x(1 − x)P ]′. (B9)
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When this expression is plugged into the second equation one940

obtains an autonomous equation for P ,941 [
x(1 − x)

(
1

N
+ gx(1 − x)

)
P

]′′

−{[gx(1 − x)(1 − 2x) − νx]P }′ = 0, (B10)

where g ≡ δγ 2/2 is the strength of the environmental stochas-942

ticity. This equation and its solution for different parameter943

regimes are discussed in Sec. III of the main text.944

Our dominant balance analysis was based on numerical945

observations (solving numerically the Fokker-Planck equation946

and comparing the magnitude of different terms) but we can947

provide a few arguments for its self-consistency.948

First, it is clear that in the demographic regime (i.e., Gx 	949

1) environmental fluctuations are negligible and the  terms950

are irrelevant, so the upper equation in (B8) plays no role. By951

the same token, if the P term in the upper equation is negligible952

in the large N limit the solution is  = 0 and the effect of953

environmental stochasticity disappears, so this term should be954

dominant when environmental variations are important.955

Let us define Y (x) ≡ x(1 − x)P , so Eq. (B9) implies that956

 = (γ δ/2)Y ′. Clearly, as long as (B10) holds,957

Y (x) = −1 − x

ν

(
1

N
+ gx(1 − x)

)
Y ′(x), (B11)

and the dominant balance argument is consistent if, as N →958

∞, the two conditions,959

νx 	 γ Y,
[x(1 − x)]′

N
	 γ Y (B12)

or960

δν2x

2
Y ′ 	 (1 − x)

(
1

N
+ gx(1 − x)

)
Y ′,

δν

2N
[x(1 − x)Y ′]′ 	 (1 − x)

(
1

N
+ gx(1 − x)

)
Y ′ (B13)

are satisfied.961

When 1/N 	 gx(1 − x) the left condition is translated962

to x 	 1 − ν/γ . On the other hand, if at large N the third963

term balances the second, νx ∼ γ Y , one may plug it into964

the γ [x(1 − x)]′ in the lower equation of (B8) to find that965

this term is negligible with respect to the third one if x > 1 −966

ν/γ . Accordingly, in the regime where our dominant balance967

argument is wrong, environmental stochasticity is negligible.968

Similarly, since the maximum value of Y ′′/Y ′ is θ , the right969

condition in (B13) holds when x 	 1 − ν2/γ 2, but if one970

assumes that the dominant balance is [x(1−x)]′
N

∼ γ Y and plug971

it into the lower equation of (B8), the result is Y ∼ exp(−θx)972

and the effect of environmental noise vanishes for γ 2 < ν2, so973

we are back in the demographic regime.974

APPENDIX C: A FOKKER-PLANCK EQUATION FOR975

THE MULTISPECIES MODEL976

Unlike the two-species game studied in Appendix B, here977

we consider the dynamics of a focal species in a multispecies978

environment. In a duel, an individual of the focal species may979

encounter an enemy with the same fitness (a neutral enemy),980

superior enemy (if the focal species is in the minus state), or981

inferior enemy (if it is in the plus state). As explained in the 982

main text, we assume that the fraction of individuals in the plus 983

state is fixed and equal to f+. Accordingly, Eq. (B1) still holds 984

but the transition probabilities depend on the chance to find a 985

neutral, superior, or inferior enemy. If ν = 0 these probabilities 986

are 987

W++
n±1→n =

(
1 − 1

δN

)
Fn±1

[
f+
2

+ (1 − f+)

(
1

2
∓ γ

4

)]
,

W−−
n±1→n =

(
1 − 1

δN

)
Fn±1

[
1 − f+

2
+ f+

(
1

2
± γ

4

)]
,

W+−
n±1→n = 1

δN
Fn±1

[
1 − f+

2
+ f+

(
1

2
± γ

4

)]
,

(C1)

W−+
n±1→n = 1

δN
Fn±1

[
f+
2

+ (1 − f+)

(
1

2
∓ γ

4

)]
,

W++
n→n = W−−

n→n =
(

1 − 1

δN

)
(1 − Fn),

W+−
n→n = W−+

n→n = 1

δN
(1 − Fn).

As in Eqs. (B2), when ν = 0, each of these terms is multiplied 988

by (1 − ν), the quantity ν(n + 1)/N is added to all the Wn+1→n 989

terms, and the quantity ν(1 − n/N ) is added to all the Wn→n 990

terms. 991

Using the same boundary conditions (B3), we can solve 992

numerically for the steady state of the linear equation (B4) 993

using an iterative procedure: starting from an initial value of 994

f+ we solve for the steady state, calculate (for this steady state) 995

the new value of f+ using the discrete version of Eq. (22), and 996

iterate this process until convergence. 997

Expanding Eq. (B5), using the new W s, we obtain 998

(1 − ν)

{
1

N
[x(1 − x)]′′ − γ [x(1 − x)(P + (1 − 2f+)]′

}

+ ν[x]′ = 2

δ
(
1 − 2

δN

) ,

(1 − ν)

{
1

N
[x(1 − x)P ]′′ − γ [x(1 − x)( + (1 − 2f+)P ]′

}
+ ν[xP ]′ = 0. (C2)

Using the dominant balance argument and the approximations 999

that we presented in the appendixes above, the upper equation 1000

of (C2) becomes 1001

 = −γ δ

2
[x(1 − x)P ]′. (C3)

Plugging this expression for  into the lower equation one 1002

finds the effective Fokker-Planck equation for P (x), 1003

[
x(1 − x)

(
1

N
+ gx(1 − x)

)
P

]′′
− ({x(1 − x)[g(1 − 2x)

+ γ (1 − 2f+)] − νx}P )′ = 0, (C4)

which is Eq. (20) of the main text. 1004
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APPENDIX D: THE SPECIES RICHNESS AND1005

ITS DISTRIBUTION1006

This paper is focused on the species abundance distribution1007

(SAD). In this appendix we would like to provide an expression1008

for the overall species richness in the community given the1009

SAD. To do that we implement standard tools which are1010

relevant to any SAD, not only to those considered above.1011

We start from P (x), the chance that a randomly chosen1012

species has abundance x. Picking numbers at random from this1013

distribution until their sum exceeds 1, a possible instantaneous1014

realization of the composition of the system is obtained.1015

Defining the random variable1016

zk =
k∑

j=1

xj , (D1)

one realizes that the cumulative distribution function (CDF)1017

for the species richness is1018

P (SR < k) = 1 − P (zk < 1). (D2)

The central limit theorem suggests that zk is distributed like a 1019

Gaussian random variable with mean kx and variance kVar(x). 1020

Accordingly, 1021

P (SR < k) = 1 − 1√
π

∫ b

a

dy e−y2
, (D3)

where y ≡ (zk − kx)/
√

2kVar(x), a = y(zk = 0), and b = 1022

y(zk = 1). The distribution function for the species richness 1023

is the derivative of this CDF, and if 2Var(x) 	 x (which is the 1024

common case), 1025

P (SR = k) = (xk + 1)e−(xk−1)2/2Var(x)k

2
√

2πVar(x)k3/2
. (D4)

Equation (D4) is a slightly skewed Gaussian that peaks at k = 1026

1/x. 1027
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