
J Stat Phys
https://doi.org/10.1007/s10955-018-1990-4

Environmental Stochasticity and the Speed of Evolution

Matan Danino1 · David A. Kessler1 ·
Nadav M. Shnerb1

Received: 17 July 2017 / Accepted: 21 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Biological populations are subject to two types of noise: demographic stochastic-
ity due to fluctuations in the reproductive success of individuals, and environmental variations
that affect coherently the relative fitness of entire populations. The rate in which the aver-
age fitness of a community increases has been considered so far using models with pure
demographic stochasticity; here we present some theoretical considerations and numerical
results for the general case where environmental variations are taken into account. When the
competition is pairwise, fitness fluctuations are shown to reduce the speed of evolution, while
under global competition the speed increases due to environmental stochasticity.

Keywords Speed of evolution · Population genetics · Fixation probability · Demographic
stochasticity · Environmental stochasticity

1 Introduction

Life forms evolvevia a continuousprocess of competition and selection.Malthusiandynamics
drives any population to its abundance limit, set by the carrying capacity of its environment
and interaction with other populations. In this state the process becomes a zero-sum game
and the relative fitnesses of individuals govern their chances to stay alive and to reproduce.
When the fitness is an inherited feature, as in the case where it reflects the characteristics of a
genotype, a new strain (species, haplotype) appears each time a significant mutation happens.
The abundances of strains with beneficial mutations and higher fitness grow, on average, at
the expense of inferior strains. If the supply of beneficial mutations is unlimited, this process
leads to a continuous increase in the average fitness of the whole community.

The rate in which the average fitness increases has been considered by many authors [1–
4]. It was shown that the average fitness grows linearly in time, and the dependence of its
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speed on the problem parameters, such as the community size N , the rate of mutation ν and
the average strength of a single mutation �s, was analyzed. However, in all these studies
the absolute fitness of an individual (and its non-mutant lineage) is considered independent
of time. The aim of this paper is to study the case where this assumption is broken, and
in particular to consider the effect of stochastic environmental variations that may lead to
temporal fluctuations of the selective force.

Let us envisage a community of size N composed with many strains/species with abun-
dances n1, n2 and so on (�i ni = N ), when these species are playing a zero-sum game.
Competition takes place by choosing one individual to die and recruiting an offspring of
another individual in its place, where the relative fitnesses of the players govern the prob-
abilities of these two choices. The randomness involved in such a process is known as
demographic stochasticity and is attributed (like shot noise) to the fact that individuals are
discrete. If two species have the same abundance n and the same fitness, after one generation
(i.e., after N elementary birth-death events) their abundanceswill differ, typically, byO(

√
n).

However, in reality, it is often the case that the relative fitness of a certain genotype varies
through time [5,6]. Environmental variations and changes in the composition of the commu-
nity may alter the usefulness and effectiveness of different traits, so the effective fitness of a
species fluctuates. Models in which the fitness landscape changes over time were suggested
by some authors in order to explain the ability of evolutionary pathways to cross fitness val-
leys [7], and the importance of such models for the understanding of the evolutionary process
in general was highlighted recently in [8]. The response of microorganism communities and
their evolutionary dynamics to fitness fluctuations has been considered experimentally by a
few groups [9–11].

In this paper we would like to address the speed of evolution problem in the presence of
fluctuating selection. We will consider a case where the time-average of the (logarithmic)
fitness of a species is s0, while the instantaneous fitness fluctuates, and is given by s(t) =
s0 + η(t), where the (zero mean) noise η(t) reflects environmental variations (or any other
natural factors) that change the fitness of a certain genotype [12–14].

During evolution, mother and daughter species have many traits in common, and one
should make a distinction between environmental variations that affect both of them in the
same way and variations that modify the relative fitness of one of them with respect to the
other. Here we study the latter case and consider only the differential response of the species
to environmental stochasticity, with an emphasis on selective forces that reverse their sign
through time. In the same spirit, when many species are considered, η(t) is taken to be an
IID random variable chosen independently for each species. Such a model may be seen as a
first step towards a more realistic theory, in which closely related species have stronger niche
overlap and so a more coherent response to environmental variations.

The environmentally induced fitness fluctuations are characterized by their amplitude γ

and by the persistence time of the environment, δ, measured in units of generations. If the
persistence time is, say, one generation (i.e., δ = 1), the abundance of two species that have
the same time-averaged fitness s0 and the same initial abundance n will differ, after one
generation, by γ n, so environmental stochasticity is much stronger than demographic noise
when the abundances are large [15].

Before we consider a specific model, we would like to emphasize a crucial observation
of past studies. Naively, one would expect that environmental stochasticity destabilizes the
dynamics of a community, making fluctuations larger and driving species to extinction more
frequently. However, as pointed out by Chesson and coworkers [16–18], under some cir-
cumstances environmental stochasticity acts as a stabilizer and supports species coexistence.
To account for that, we consider here two generic models: one for environmental stochas-
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ticity without such a noise-induced stabilizing mechanism (model A), the other with this
mechanism (model B).

In the next section wewill describe these two processes in some detail and explain the way
we incorporate them into a model of evolutionary dynamics. In Sect. 3 we define both models
together and sketch the numerical procedures we have used to simulate them. A review of
the known results for the pure demographic noise case is given in Sect. 4. In this section
we emphasize the distinction between the successional-fixation (selective sweeps) and the
clonal interference phase and that between the regime of weak selection and the regime of
strong selection. Section 5 contains our main results for model A and model B, with analytic
expressions for the successive-fixation phase and numerical simulations for both that phase
and the clonal interference phase. The fundamental theorem of natural selection [19,20] is
discussed in that context. Finally we provide a discussion of the main lessons of our work
and point out a few future directions.

2 Two Models of Environmental Stochasticity

Environmental variations may affect the fitness of strains or species via many different mech-
anisms that have to do with many traits. To capture the essence of the problem, we study
here two simple zero-sum games for asexually reproductive individuals, where the fitness
determines the chance of reproduction.

We consider a closed system with N individuals. The instantaneous state of this system is
fully characterized by a list of strain abundances and their relative fitnesses: the n1 individuals
in strain 1 have relative fitness s1 and so on. Only fitness differences (si − s j ) play a role in
the instantaneous dynamics. Relative fitness is measured from the mean value of the fitness
in the population s̄ = ∑

i si ni , and the speed of evolution vev is defined to be ds̄/dt . s̄ is
the mean of the individual fitness probability density, detailing how many individuals have
fitness between s and s + ds.

The shape of the fitness density histogram (for fixed N ) reflects the balance between
selection and mutation. Selection constantly drives low-fitness species to extinction and
therefore reduces the variation in fitness, while mutation generates more and more new
strains and broadens the fitness distribution. In the long run the fitness distribution converges
to a stable shape of a soliton [2] that moves at constant speed vev . In theories without
environmental stochasticity, vev depends on the width of the soliton: the rate of growth of the
abundance of a mutant strain at the leading edge of the soliton increases with the width of the
soliton (since the fitness difference between its fitness and s̄ is larger). Fisher’s fundamental
theorem of natural selection [19,21] states that the instantaneous speed of evolution is equal
to the instantaneous genetic variance in fitness.

Now let us describe two different ways to incorporate fluctuating selection in such a
system.

• Model A (no stabilizing effect): Every elementary competition event is a duel: two indi-
viduals out of N are chosen at random (without replacement) and fight against each other.
The loser dies, the winner produces a single offspring. The chance of an individual to
win a duel depends on its relative fitness with respect to its competitor. If individual 1
belongs to species i and its fitness is si , while 2 belong to species j with s j , 1 wins with
probability P1 that depends on si − s j , and the chance of 2 to win is 1− P1. In model A
P1 is given by,

P1 = 1

1 + esi−s j
≈ 1

2
+ si − s j

4
, (1)
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where the last term provides a decent approximation when |si − s j | � 1.

In model A the competition is pairwise. It may describe, for example, the dynamics of
animals on an island where a random encounter between two individuals may end up in
a life and death battle over food, a mate or a territory, or the process of local competition
for space between two strains of bacteria [22,23].

• Model B (with stabilizing effect): In this model the competition is global (or free for
all), and any birth-death event involves all the individuals in the community. First, one
individual is chosen at random (independent of its fitness) to die. Then, the chance of
species k to win the open “slot”, Pk , is given by

P(k) = nkesk
∑

j n j es j
. (2)

Model B may describe the dynamics of, say, a forest with many species of trees and
long-range seed dispersal. The seed bank in the soil reflects the composition of the whole
community and upon the death of an adult tree one of the local seeds is chosen to capture
the newly opened gap with a chance proportional to its fitness. Similarly, it models the
competition for a common resource between bacterial strains if the diffusion constant of
the resource is large. In model B the overall chance of a species to increase its population
reflects both its abundance and its instantaneous fitness. Equation (2) is used by many
authors to describe a Moran process (see, e.g., [9,24]) and the infinite-N (deterministic)
limit of this dynamics is described by the replicator equation.

In the “neutral” case, i.e., when there are no fitness differences between individuals, model
AandmodelBcoincide since theyboth yield the same transition probabilities.However,when
fitness varies in time, the two models differ strongly [25–27]. For two-species competition
under model A, for example, the time to absorption (the time until one of the species goes
extinct and the other captures the whole system) scales, as N → ∞, like ln N/|�s|, where
�s is the mean fitness difference between the two species. On the other hand, under the
dynamics of model B, the time to absorption scales like N (1−|�s̃|)/δ , where �s̃ ≡ 2�s/γ 2

is the effective strength of selection in this system [25]. As long as |�s̃| < 1, model B, is
more stable than model A, due to noise-induced stabilization.

To get some intuition for the mechanism that allows the stochasticity to act as a stabilizing
factor in model B, let us think about a “winner takes all” version of this model with two
species and ten individuals. Each year, one individual is picked at random to die, and one
species is chosen at random to win the empty slot. Starting with 8 red individuals and 2
green, when the environment favors the greens their chance to increase their abundance by
one is 0.8, but when the reds are favorable their chance to grow is only 0.2. Rare species
have a larger chance to grow in abundance just because they are rare, and this implies that
the noise acts to stabilize the 50:50 state and to facilitate the invasion of rare species. This
effect survives even if one of the species has some average fitness advantage, as shown in
[16,17,25,26].

Model A does not support this stabilizing effect. If the dynamics of the system described
above takes place in a series of duels, starting from 8 reds and 2 greens, the chance for an
interspecific duel will be 32/90, so the probabilities to end up at 9:1 or at 7:3 will be the same:
16/90, meaning that there is no preference for rare or common species and no stabilizing
effect.

Another fundamental difference between model A and model B appears when the per-
sistence time of the environment vanishes, δ → 0. Model A reduces, in such a case, to a
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model with pure demographic noise since one picks the relative fitness independently for
each elementary duel. On the other hand, in model B the stabilizing effect is maximal when
δ → 0, since, as we have seen, the effect occurs on the level of an elementary event. When
δ is large, on the other hand, the stabilizing effect disappears [16,25].

Our main goal in what follows is to explain the effect of stochasticity on the evolution-
ary dynamics with and without the above stabilizing mechanism. We begin with an exact
definition of the different dynamics through the numerical procedures that we have used to
simulate them, and by stating the main known results about a two-species system.

3 Model Definitions and Numerical Procedures

We have simulated a community of N individuals that may belong to different species, where
the (log) fitness of each species or strain i is characterized by two numbers: its time-averaged
value si0 and its instantaneous value s

i (t). In the initial state, all individuals except one belong
to species 1 with average fitness s10 = 0, and the remaining individual belongs to species 2
with average fitness s20 = �s.

Environmental variations are responsible to the difference between si0 and si (t), and are
characterized by the strength of variations γ and the persistence time of the environment
δ. After each elementary birth-death step (1/N generations), the environment flips with
probability 1/(Nδ), so its persistence time is taken from a geometric distribution with mean
δ generations. After each shift of this type, the instantaneous fitness of species i (for each i)
is set to be si = si0 + ηi , where si0 is a species specific, time-independent parameter and ηi is
picked, independently for each i , from a uniform distribution on the interval [−√

3γ,
√
3γ ],

so that Var(ηi ) = γ 2.
In each elementary step, one individual is chosen at random. With probability ν, this is a

mutation step and the mutant becomes the originator of a new species, say k. In such a case
both the mean fitness sk0 and the instantaneous fitness sk(t) of the chosen individual either
increase over its mother species by �s with probability 1/2 or otherwise decrease by �s.
With probability 1 − ν we have a competition step, and here the algorithms of model A and
model B are different.

Model A In a competition step, another (different) individual is chosen at random to compete
with the already chosen one. The chance of an individual i to win the competition
against j is given by Eq. (3). An offspring of the winner, which inherits its parent
fitness (both the average s0 and the instantaneous fitness s0 + η(t)), then replaces
the loser.

Model B In a competition step, the chosen individual is removed. It is replaced by an off-
spring that belongs to species k with the probability Pk given in Eq. (2).

To facilitate the numerics ofmodelB,wehave implemented the followingprocedure.Upon
the death of i , another individual j �= i is chosen at random, and is rejected (to reproduce
and fill the empty slot with its offspring) with probability 1 − exp(s j − smax ), where smax

is the maximum instantaneous fitness, so if this individual fitness is smax it is accepted with
certainty. Upon rejection, another individual is picked at random and the procedure is iterated
until the first acceptance. This can be easily shown to produce the transition probabilities
given in Eq. (2).

Our nomenclature is summarized in Table 1.
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Table 1 Glossary

Term Description

N Number of individuals in the community

ni Number of individuals belonging to species i

δ Persistence time of the environment, measured in generations

�n=1 The chance of a single mutant to establish to reach fixation in a two species game

s The relative (logarithmic) fitness of a species. s = s0 ± η(t)

s0 The time-independent component of the fitness

γ The amplitude fitness fluctuations

g ≡ δγ 2/2 The strength of environmental stochasticity

s̃ ≡ 2s0/γ 2 Variance to mean ratio of selection fluctuations

ν Mutation rate

�s Average strength of a single mutation

s0 The averaged mean fitness. Overline implies average over all individuals in the community

vev Speed of evolution, ds0/dt

4 Pure Demographic Noise

In this section, we briefly review some well known results for the speed of evolution in
a system with pure demographic noise, in order to set up the framework for our current
discussion, inwhichwe also include fluctuating selection. To this endwewill try to emphasize
two basic aspects of the analysis, namely the chance of establishment of a beneficial mutation
and Fisher’s fundamental theorem of natural selection.

Let us consider a system in which N − 1 individuals have the same fitness s and one
beneficial mutant has s = s + �s. (for the moment we neglect other mutation events). The
chance of the single mutant to reach fixation is given by [28]

�n=1 = 1 − e−�s

1 − e−N�s
. (3)

Throughout this paper we shall assume that �s � 1.
Equation (3) has two regimes. In the strong selection regime N�s 	 1, the denominator

is essentially unity (if �s > 0) and the chance of fixation becomes N -independent, so
�n=1 ≈ �s. In the weak selection regime N�s � 1, the chance of fixation for a single
mutant is given, to first order in N�s, by,

�n=1 = 1

N

(

1 + N�s

2

)

. (4)

One may define a critical abundance nc = 1/�s: below this abundance, the mutant popu-
lation dynamics is dominated by noise and selection is negligible, while above nc selection is
dominant and assures fixation [4]. The weak selection regime corresponds to N � nc, where
the dynamics is almost neutral; in a purely neutral system all individuals are demographically
equivalent and the chance of fixation is, by symmetry, 1/N . In the strong selection regime,
the mutant abundance has to reach nc in an almost neutral game to make selection inevitable,
and the chance for that is 1/nc = �s.

123



Environmental Stochasticity and the Speed of Evolution

When the mutant is deleterious, �s < 0, the factor e−N�s in the denominator of (3)
diverges in the strong selection regime, making the chance of fixation exponentially small.
For N � nc, on the other hand, selection is negligible and the chance of fixation does not
change much, as indicated by Eq. (4).

Now let us analyze the behavior of this system when new mutants are produced at a
constant per-generation rate νN . A (deleterious or advantageous) mutant is “successful”
(will reach fixation) with probability �n=1(±�s), so the average number of generations one
has to wait until the birth of a successful beneficial mutant is

τ+
1 = 2

νN�n=1(�s)
, (5)

and the mean time until the birth of a successful deleterious mutant is τ−
1 = 2/[νN�n=1

(−�s)].
In a model with pure demographic stochasticity, the time to fixation in the weak selection

regime is τ2 = N generations, while in the strong selection regime [28],

τ2 = 2 ln(N )

|�s| . (6)

In both cases this timescale is independent of the sign of �s.
Accordingly, when Nν is small, so that the system is in its successional-fixation (one

locus) phase, the speed of evolution is,

vev =
(

�s

τ+
1 + τ+

2

)
�+

n=1

�+
n=1 + �−

n=1

+
(

−�s

τ−
1 + τ−

2

)
�−

n=1

�+
n=1 + �−

n=1

, (7)

where quantities with the superscript plus (minus) are functions of +�s ( −�s). However,
unless τ2 � τ1, new successful mutants appear before the fixation of the first one occurs.
Accordingly, the condition for successional-fixation is

Strong selection νN ln N � �s/�+
n=1 ≈ 1

Weak selection νN � 1.

In the successional fixation phase Eq. (7) takes the form,

vev = Nν�s

2

(�+
n=1)

2 − (�−
n=1)

2

�+
n=1 + �−

n=1

= Nν�s

2
(�+

n=1 − �−
n=1). (8)

In the strong selection regime �−
n=1 vanishes and

vev = Nν�s�+
n=1

2
≈ Nν(�s)2

2
, (9)

where the last term comes from Eq. (3) when �s � 1 and N�s 	 1. This behavior is
demonstrated in Fig. 1.

In the weak selection regime,

vev = Nν(�s)2
d�n=1

d�s

∣
∣
∣
∣
s=0

= Nν(�s)2

2
, (10)

so the speed of evolution is the same in the weak and the strong selection regimes.
When N (or ν), increases the system leaves the successional-fixation phase and enters

the clonal interference phase [29], where many clones with different fitness levels compete
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Fig. 1 The increase in the average fitness of a community, s̄, as a function of time (measured in generations).
Results are shown for a community of N = 104 individuals, simulatedwith ν = 10−5, where�s = 0.08, 0.16
and 0.25 (green, blue and res lines, correspondingly). The dashed black lines are the predictions of (9) in each
case. The pronounced steps in s̄ indicate that the system is indeed in its successional-fixation phase, and the
absence of down steps is a manifestation of strong selection (Color figure online)

and mutate at the same time. Unlike [4], here we make no distinction between “clonal inter-
ference” and “multiple mutations” as two different approximate pictures of the evolutionary
dynamics in the multiple species phase, so our clonal interference regime is everywhere
outside the successional-fixation region of parameters.

In the clonal interference phase, the growth of s̄ is continuous, not stepwise, since new
beneficial mutations appear (and the abundance of their lineage grow) in parallel. Now the
steady state is a soliton that moves, on average, at a constant speed. Since the growth rate
of the most beneficial clone (at the leading edge of the soliton) is determined by its fitness
advantage with respect to the average individual, it is clear that the width of the soliton sets
the speed of evolution, in agreement with Fisher’s fundamental theorem of natural selection.
Figure 2 demonstrates this aspect of the theory using our simulations.

5 Speed of Evolution in the Presence of Environmental Stochasticity

The fate of amutant population in a two-species community has been studied recently [25,30,
31]. The chance of fixation and the time to absorption (either fixation or loss) were calculated
for both model A and model B. The mean time to fixation was calculated only for model A.
In this section we will use these results.

As explained above, the environmental noise is characterized by its amplitude, which
is proportional to γ , and its persistence time δ. The strength of the environmental noise is
g = γ 2δ/2, and the ratio between this strength and the strength of demographic fluctuations,
1/N , is given byG ≡ Ng. Another measure is the ratio between selection and environmental
stochasticity, s̃ ≡ 2|�s|/g (see Table 1).

An important feature of both model A and model B is the appearance of a new scale that
separates the fluctuation dominated regime from the selection dominated regime. This new
scale is
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Fig. 2 The increase in the average fitness of a community, s̄, as a function of time (main panel). Results
are shown for a community of N = 105 individuals, simulated with ν = 0.1 and �s = 0.01, in the clonal
interference phase. A histogram (upper left) shows the number of individuals at each fitness level at the
endpoint of the simulation (t = 10000). Fisher’s fundamental theorem of natural selection is demonstrated
in the lower-right inset, where the fitness variance (red) and vev (local derivative of s̄(t), smoothed over 20
points) are plotted together (Color figure online)

nc =
exp

(
g

2|�s|
)

g
, (11)

and it diverges when |�s| � g. Accordingly, the study of the weak selection regime is much
more relevant when a system with environmental stochasticity is considered.

Note that in [14] a very similar scale, (exp(g/�s)−1)/g, was introduced. This definition
has the advantage that the critical abundance converges to 1/s when g goes to zero, but
otherwise the two scales are qualitatively similar. In any case, the results presented below
were obtained using an asymptotic analysis in the large G = Ng limit, so we do not expect
them to converge to the purely demographic results when g → 0.

5.1 Model A

Both the chance of fixation and the time to fixation were calculated, for model A, in our
recent work [30]. The chance of fixation of a single mutant is,

�n=1 = 1 − (1 + g)−(�s/g)

1 − G−2�s/g
, (12)

Equation (12) yields, in the weak selection regime [14,30],

�n=1 ≈ ln(1 + g)

2 ln(G)

(

1 + �s

g
lnG

)

. (13)

The time to fixation in the strong selection regime is the same as in the purely demographic
case (6), but in the weak selection sector [30],

τ2 = 2

3g
ln2(gN ). (14)
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Fig. 3 s̄0 versus time in the successional-fixation phase of model A. Results are shown for N = 105, γ = √
2,

δ = 3, with �s = 0.25 (left panel) and �s = 0.5 (right panel). Each run yields a single curve and one can see
the pronounced stepwise structure. The average (thick red line) is very close to the prediction of (15) (thick
blue curve) and differs substantially from the demographic noise prediction (10) (thick black line). In the left
panel the average was taken from 10 runs. In the right panel the average was taken from 100 runs, only a few
of them are shown (Color figure online)

Accordingly, the system will be in its successional-fixation phase if,

Strong selection νN ln N � �s
1−(1+g)−�s/g ≈ 1

Weak selection νN ln(Ng) � 6g
ln(1+g) ≈ 6.

As in the pure demographic case, the speed of evolution in the weak and the strong
selection regimes turns out to be the same,

vev = Nν(�s)2

2

ln(1 + g)

g
. (15)

Since ln(1 + g)/g is a monotonously decreasing function of g, the speed of evolution in
model A decreases, in comparison with its pure demographic value, when the environmental
stochasticity increases. Taking δ = 3 and γ = √

2, we were able to compare our prediction
with the numerics in the regime where the outcome of (15) differs substantially from the
demographic noise prediction (10). The results are shown in Fig. 3. The agreement between
(15) and the outcome of the simulation is evident, as well as the disagreement between the
numerics and (10).Moreover, one can see that the stochasticity actually slows down the speed
of evolution, as expected.

In the clonal interference phase we have no analytic predictions and the main numerical
results are illustrated in Figs. 4, 5, and 6. The mean fitness of the whole community still
grows linearly in time, and the speed of evolution decreases monotonically as γ increases
in agreement with the outcome in the successional-fixation phase. For fixed γ , the relative
effect of the environmental noise, vev(γ )/vev(γ = 0), decreases as N grows, as shown in
Fig. 5, but the rate of decrease slows down considerably with N . Although the relative effect
becomes smaller as N increases, it is still pronounced. Since the speed of evolution diverges as
N → ∞ it is difficult to speak about the effect of environmental noise in the asymptotic limit.

Finally, let us consider Fisher’s fundamental theorem of natural selection under environ-
mental stochasticity. While at each moment the rate of growth of the instantaneous fitness of
the community, ds(t)/dt , is equal to the instantaneous variance of s, the same statement is
not true with regard to s0. As demonstrated in Fig. 6, as γ grows the variance of s0 (when
averaged over long periods of time) increases while the value of ds0/dt decreases.
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Fig. 4 The increase in the average fitness of a community as a function of time. Results are shown here for
a community of N = 104 individuals, simulated with δ = 0.1, ν = 0.01 and δs = 0.01. The lines show
the average fitness s0 as a function of time, where time is measured in generations. The speed of evolution is
highest when γ = 0 (blue line) and decreases as γ grows (Color figure online)

Fig. 5 The speed of evolution for model A (the slope measured from curves like those presented in Fig. 4)
when plotted against γ for N = 1000 (black full line and circles), N = 104 (red dashed line and squares)
and N = 105 (blue dotted line and diamonds). All slopes were obtained from simulation of 106 generations,
with �s = 0.01 and ν = 0.01. The speed of evolution increases with N but for each N it decreases with
γ (inset). The relative decrease with γ , vev(γ )/vev(γ = 0) becomes slightly smaller as N increases (main
panel) (Color figure online)
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Fig. 6 The speed of evolution (the slope measured from curves like those presented in Fig. 4, blue squares)
and the average variance of s0 (red circles), both plotted against γ for simulations with N = 104, ν = 0.01,
δ = 0.1 and �s = 0.1. For each value of γ the data were extracted from a run with 104 generations. In the
inset one can see the instantaneous values of the variance of s0 and the velocity as measured during 1000
generations of the run with γ = 2.6, where the differences between the two quantities are pronounced (Color
figure online)

5.2 Model B

The noise-induced stabilizing mechanism that affects model B dynamics has been analyzed
in detail in [25,26,31]. For a two-species competition, where the fitness difference is �s, the
noise-induced attractive fixed point is at

n∗ = N

(
1

2
+ �s̃

2

)

. (16)

where�s̃ = 2�s/γ 2.When n∗/N is not between zero and one (i.e. |�s̃| > 1), the qualitative
behavior of model B is similar to that of model A [31] and we will not discuss it here. Instead
we consider cases where the attractive fixed point is in the physical domain. For this scenario
the chance of fixation of a single mutant was calculated in [31],

�n=1 = 1 − (1 + g)−(1+�s̃)/δ

1 + D1G−2�s̃/δ
, (17)

where D1 = (1 + �s̃)/(1 − �s̃).
Unlike model A, here in the weak selection regime the chance of fixation approaches an

N -independent constant,

�n=1 ≈ 1 − (1 + g)−1/δ

2

(

1 + �s̃ ln(G)

δ

)

. (18)
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The time to fixation τ2 has not yet calculated for model B. However, in [25,27] the time to
absorption (either fixation or extinction) for a mutant population that reaches n∗ was found,

τabs ∼ C1N
1−�s̃

δ (19)

where C1 is an N -independent constant.
In [31], we showed that the numerator of (17) is the chance of the mutant to reach the

basin of attraction of the coexistence fixed point (16), while the denominator is one over
the chance to reach fixation starting from the noise-induced fixed point. We also showed
that the distance that a mutant should travel in order to reach the basin of attraction, and
the time (in generation) required for that, are both N -independent. Accordingly, the leading
contribution to τ2 in the large N limit comes from τabs , and for the rest of this section we
take τ2 ≈ τabs = C1N (1−�s̃)/δ .

The divergence of τ2 implies that the successional-fixation phase is extremely narrow
under model B dynamics. For model B the both �n=1 and τ2 change only slightly between
the weak and the strong selection regimes, so the condition for the successional-fixation
phase is

νN 1+ 1−�s̃
δ � C2, (20)

where C2 is, again, an N -independent constant.
The speed of evolution in these two regimes is,

Strong selection vev = νN�s
2 [1 − (1 + g)−1/δ−�s/g]

Weak selection vev = νN ln(Ng)(�s)2

2g [1 − (1 + g)−1/δ].
Note that these two expressions coincide where N ∼ nc. In contrast with model A, here
the speed of evolution increases with γ , the amplitude of the environmental fluctuations, as
demonstrated in Fig. 7. In the clonal interference phase we observe numerically the same
behavior: the velocity grows with γ , first almost linearly and then the graph levels off (Fig.
8). In the region of parameters we have checked, our simulations (not shown) also suggest
that the relative increase in the velocity becomes larger as N increases, as opposed to the
outcome of the same numerical experiment in model A.

Again, we observe that Fisher’s fundamental theorem does not hold for the (time averaged)
variance of the time independent component of the fitness s0, since it grows even faster than
vev (inset of Fig. 8).

6 Discussion

The “speed of evolution” problem belongs to the general field of spatial invasion of a stable
state into an unstable one. Not surprisingly, the first to consider this problemwas R. A. Fisher
[32], who suggested his famous equation,

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
+ a[ρ(x, t) − ρ2(x, t)], (21)

to describe the spreading of a favored mutation in a spatially structured population. Here
ρ(x, t) is the fraction of the local population that have the favored mutation, a is the local
growth rate of this fraction (it is proportional to the selective advantage of the mutation) and
D is the spatial diffusion constant. The Fisher (FKPP) equation is known to support a front
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Fig. 7 s0 versus time at the successional-fixation phase for the purely demographic case γ = 0 and for a
system in which environmental stochasticity was implemented according to the procedure of model B. A
single typical history (solid line) and an average over 3000 samples (dashed lines) are shown for γ = 0 (red)
and γ = 1/2 (blue), with δ = 0.2, ν = 10−4, N = 100 and �s = 0.125. In both cases the system is in its
strong selection regime. The speed of evolution in the neutral case is, for these parameters, 1/12800, while
our expression for strong selection model B dynamics yields, for γ = 1/2, vev ≈ 1/7300, both estimations fit
quite well the observed results. Clearly the speed of evolution is growing with γ , as opposed to the behavior
without storage (model A) demonstrated in Fig. 3 (Color figure online)

Fig. 8 vev versus γ in the clonal interference phase of model B. For 11 values of γ , s0 was plotted against
time for 10000 generations (lower inset) and the measured slope was plotted against γ (main, blue circles). As
in the successional-fixation phase, vev increases with γ . In the upper left inset the same vev points (blue) are
shown together with the variance of s0 (red): while vev grows, the variance grow even faster. The parameters
of the simulation were N = 1000, ν = 0.01, δ = 0.1 and �s = 0.2 (Color fiure online)

that propagates with velocity 2
√
Da; this velocity is determined, as in other cases of what is

known as “pulled fronts”, by the dynamics of its leading edge [33].
In the context of evolution, space is translated to fitness (x → s), the diffusion constant

is the effective mutation rate and a, the growth rate of a clone with fitness s, is simply s − s̄,
the distance from the mean. The corresponding equation is
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∂ρ(s, t)

∂t
= νe f f

∂2ρ(s, t)

∂x2
+ρ(s, t)

∫ ∞

−∞
ds′ (s−s′)ρ(s′, t) = νe f f

∂2ρ(s, t)

∂x2
+(s−s̄)ρ(s, t).

(22)
This is a Fisher-like equation with nonlocal competition, but the competition kernel is asym-
metric and increases with the distance, unlike the cases that were studied in the literature
in this context [34,35]. Multiplying both sides of Eq. (22) by s and integrating over s one
may easily derive the relationship ˙̄s = s2 − s̄2, i.e., Fisher’s fundamental theorem of natural
selection.

Itmaybe very interesting to consider the effect of demographic and environmental stochas-
ticity on the features of (22) by adding terms like ζ(x, t)

√
ρ (for demographic stochasticity)

and ξ(x, t)ρ (for environmental stochasticity), where ζ and ξ are white noise. The resulting
equations may be analyzed perturbatively to reveal the effect of noise in a neatly arranged
fashion.

In the strong selection regimewe have seen that the effect of stochasticity on the successful
mutation rate is the crucial factor that determines the speed of evolution in the successional-
fixation phase: vev grows when �n=1 increases, as in model B, and slows down when �n=1

decreases for model A. In the clonal interference phase our simulations suggest the same
behavior, despite the fact that the width of the soliton (the variance of s0) grows when g
increases in both cases. Apparently the width of the soliton plays a secondary role with
respect to the successful mutation rate. Given that, we expect that the main effect of the
addition of noise to (22) will be a renormalization of the “diffusion constant” ν, which in
turn affects the width of the moving soliton.

In the weak selection regime the interpretation of our results is more subtle. Here both
deleterious and beneficial mutants may reach fixation, and the speed of evolution depends
on the linear response of � to �s. In model A, environmental variations act to diminish the
differences between positive and negative selection, hence the speed of evolution decreases
when the fluctuations increases. In model B, the main effect of environmental variations is to
stabilize the attractive fixed point at n∗, and this point moves slightly to the right (left) of N/2
when �s is positive (negative), yielding a larger response than in the purely demographic
case.

The validity of our analysis is determined by the validity of the underlying assumptions that
lead to the expressions presented here for the chance of (and the time to) fixation. In particular,
our theory is based on a large G asymptotic analysis and it usually fails when G ∼ 1, so our
results do not extrapolate, in general, to the purely neutral limit (although some of them do).
Moreover, our methods assume that environmental noise generates diffusive motion in the
log-abundance space, so if δ 	 ln N/�s, so that fixation may occur during a single sweep,
the results become invalid.

The relevance of this work depends on the importance of fitness fluctuations in the evolu-
tionary process. Empirical studies of abundance variations in a wide variety of ecosystems,
from animals and trees to microbial experiments, show decisively the dominance of environ-
mental stochasticity [36–40]. Much less is known about the role of environmental variations
during evolution, and even empirical assessments of fitness diversity in a population are quite
rare [13].

In a recent review article [8], Messer et al. discussed some evidence for the effect of
environmental variations on the magnitude and the sign of selective forces and their possible
effect on the evolutionary dynamics. For example, measured rates of phenotypic evolution
are inversely proportional to the timescale of measurement, a scaling that arises naturally
if the population tracks environmental variations by heritable changes in phenotypic traits.
In general, we see no a-priori reason to believe that in a generic evolutionary process �s
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is much larger than γ 2. If this is not the case, our analysis may be important for the study
of the evolutionary process in large and even to the eco-evolutionary dynamics observed in
microbial communities.

In a natural community that evolves via selection and mutation, the response of different
species to environmental variations is perhaps partially correlated. In a two species game, for
example, environmental variations that affect coherently both the mother and the daughter
species will change the overall carrying capacity N . This will modify the effective strength
of the demographic noise keeping all other parameters fixed, a scenario that was discussed
recently by Wienand et al. [41].

In parallel, the strength of competition between species may decay with the distance
to their common ancestor (the competitive-relatedness hypothesis), but the typical fitness
differences will grow. The relationship between these two factors has been analyzed in [42].
A reliable entanglement of these effects in an empirical system may prove a formidable task,
but the basic intuitive argument presented in this work can provide a few simple guidelines
for such an analysis.

Acknowledgements N.M.S. acknowledge the support of the ISF-NRF Singapore joint research program
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